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On the Dual Space for the Strict Topology
B1 and the Space M (X) in Function Spaces

J Aguayo, A. K. Katsaras and S. Navarro

Abstract

Let Cy(X) be the space of all bounded continuous functions from a zero-dimensional
topological space X to a non-Archimedean valued field K. The dual space of Cy(X)
under the strict topology (; is investigated. Also certain subspaces 8,X, o X of the
Banachewski compactification 3,X of X are introduced and some of the properties
of the bounded finitely-additive measures on the algebra of all clopen subsets of X
are studied.

Introduction

In [4], Alexandroff proved that the dual of the Banach space C,(X), of all bounded
continuous real functions on a completely regular space X, can be identified with the
space M (X) of all bounded finitely-additive regular Baire measures on X. Several other
authors have extended his results by considering various topologies on Cy(X). Some of
these topologies are called strict topologies and yield as dual spaces certain subspaces
of M(X). A good survey on Baire measures and strict topologies can be found in [19)].
Some analogous problems have been studied in non-Archimedean spaces. For X a zero-
dimensional Hausdorff topological space and K a complete non-Archimedean valued field,
we denote by C(X) the space of all continuous K-valued functions on X and by Cy(X)
the subspace of all bounded members of C(X). Let M(X) be the space of all bounded
finitely-additive measures on the algebra of all clopen subsets of X. An integration process
of K-valued functions on X with respect to members of M(X) was defined in [§8]. The
strict topology [, on Cy(X) was defined in [9], the topologies 8 and 3, were introduced
in [10] and the topologies 5, and (. in [1] and [12], respectively. As it was proved in
the above papers, the topologies 3,, 3, 8, and (. vield as dual spaces certain subspaces of
M(X).

In section 2 of this paper, we prove that the dual space for the topology (; is the space
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of all bounded c-additive functionals on C,(X). It is also proved that a subset H of
bounded linear functionals on C,(X) is 51 (resp. §) equicontinuous iff it is norm bounded
and uniformly o-additive (resp. 7-additive). In section 3, if 7 is a locally convex topology
on Cy(X), we will denote by 7° the finest locally convex topology on Cy(X) having the
same as T convergent sequences. It is proved that 3 = 3;. In case X is locally compact,
it is shown that the topologies 32, 8°, 35, 3 and B have the same dual space and that
B; coincides with the topology of uniform convergence iff X is pseudocompact. It is also
proved that the topologies 35, 6°, 5; and [; are locally solid.

In section 4, we introduce the subspaces 6,X and p,X of 8,X. It is shown that 6,X is
the completion of X under the strongest non-Archimedean uniformity compatible with
its topology and that p,X is the smallest of all subspaces Y of the N-repletion v,X of
X which contain X and have the property that every bounded subset of Y is relatively
compact. Finally in section 5 we study some of the properties of M (X). If M,(X), M, (X)
are the subspaces of all o-additive and r-additive members of M (X), respectively, and
M,(X) the space of separable measures, we give necessary and sufficient conditions on
X so that one or more of the following equalities hold : M, (X) = M,(X), M,(X) =
M, (X), M(X) = My (X), M(X) = My(X), M(X) = M, (X).

1 Preliminaries

Throughout this paper, K stands for a complete non-Archimedean valued field whose
valuation is not trivial, X a Hausdorff zero-dimensional topological space, C(X) the
space of all continuous functions from X to K, Cy(X) the space of all bounded members
of C(X) and C,.(X) the space of all f in C(X) whose range in K is relatively compact.
For f € KX and A C X, we define

£l = sup f(2)], £ = 11 ]x-

By a norm (resp. seminorm) on a vector space over K we mean a non-Archimedean norm
(resp. seminorm). Also by a locally convex space we mean a non-Archimedean locally
convex space over K. For A C X, x4 is the K-characteristic function of A. Let K(X)
denote the algebra of all clopen (i.e. both closed and open) subsets of X and let M(X)
(see [8]) be the space of all finitely-additive K-valued measures on K (X). For m € M(X)
and A a clopen subset of X, we define

im|(A) = sup{|m(B)| : B € K(X), B C A}, |Im| = |m|(X).

For a net (Vs) of subsets of X we write Vs | 0 if it is decreasing and (Vs = 0. We
denote by M, (X) the space of all s-additive members of M(X), i.e. those m such that
m(V,) — 0 for each sequence (V) of clopen sets which decreases to the empty set (see
[8]). The space M,(X) consists of all T-additive members of M(X), i.e. those m with
m(Vs) — 0 when V; | 0. If m is o-additive and A, | 0, then |m|(4,) — 0 (see [8]).
Also, if m is 7-additive and Vs | 0, then |m|(Vs) — 0 by [18], p. 249. For m € M(X),d
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a continuous ultrapseudometric on X on X and A a d-clopen subset of X, we define
|m|a(A) = sup|m(B)|, where the supremum is taken over the family of all d-clopen
subsets of A. Also, for Z a subset of X, we define |m|%(Z) = inf sup, |m|q4(4,), where
the infimum is taken over the family of all sequences (4,) of d-clopen subsets of X with
Z C |JAn. We denote by M,(X) the space of all separable members of M(X), i.e.
those m with the property: for each continuous ultrapseudometric d on X, there exists
a d-closed d-separable subset G of X with |m|5(G°) = 0 (see [12]). For m € M(X), we
define

supp(m) = ﬂ{V € K(X) : |m|(V®) = 0}.

As it is shown in [8], if m is T-additive, then supp(m) is a support set for m, i.e. m(V) =0
if the clopen set V is disjoint from supp(m).

Next we will recall the definition of the integral of an f € KX with respect to a member m
of M(X) (see [7]). An f € K* is called m-integrable if there exists an element of K, which
we will denote by [ fdm and call it the integral of f, such that for each e > 0 there exists
a clopen partition {A;, ..., A,} of X, such that for each clopen partition {Bj,... By} of
X, which is a refinement of {4, ..., A,}, and any choice of z; € B;,;m we have

N
l/fdm — Zf(:ci)m(Bi) <e.

For A C X, we define [, fdm = [ fxadm. As it is shown in [12], if m € M,(X), then
every f € Cy(X) is m-integrable. In particular this happens if m € M, (X).

Finally we will recall the definitions of the topologies s, 3, 81, 8. on Cy(X). Let Bo(X)
denote the space of all K-valued functions on X which are bounded and vanish at infinity.
Each h € B,(X) defines a seminorm ps on Cy(X),pr(f) = ||2f||- Then S, is the locally
convex topology generated by the seminorms pp,h € B,(X). Next, let ® be a family of
closed subsets of the Banachewski compactification 3,X of X which are disjoint from X.
Each f € C,.(X) has a unique continuous extension f% to all of 5,X. Let Z € & and
let Cz be the set of all f € C,.(X) with f% = 0 on Z. We denote by 3z the locally
convex topology on C,(X) generated by the seminorms py, A € C». The inductive limit
of the topologies 7, Z € ® will be denoted by Bs. Taking as ® the collection Q of all
closed and the collection € of all K-zero subsets of 3,X which are disjoint from X, we
get the topologies § and f; respectively. The topology 3, is obtained by taking as ® the
collection {2, of all Z € 2 for which there exists a clopen partition (V;) on X such that,
for each 4, the closure 7" of V; in B,X is disjoint from Z (see [1]). As it is shown in
[12], Theorem 2.2, an absolutely convex subset W of Cy(X)is a Bz-neighborhood of zero,
for some Z € Q, iff for each r > 0 there exists a clopen subset A of X, whose closure in
BoX is disjoint from Z, and an € > 0 such that {f : |[f|| < ,||flla < ¢ C W. Finally for
the definition of the topology 3. we refer to [12].
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2 o-Additive and 7-Additive Functionals

Let G be a solid subspace of C'(X) and let u be a linear functional on G. Assume that «
is bounded on each By, f € G, where By = {g € G : |g| < |f|}. Define |u| on G by

[u|(f) = sup{|u(g)| : g € By}

Then |u| is a non-Archimedean seminorm on G. In fact it is clear that |u|(Af) = |A||u|(f)
for f e G,A € K. Let fi,f2 € G and g € G, |g|] < max{|fi|,|f2|}- By [15 ], Proposition
2.4, there are g;, g2 € C(X), |g:| < |fil,9 = g1 + go. Since G is a solid subspace of C'(X),
we have that g; € By,,t = 1,2. Hence

|u(g)| < max{|u(g1)], |u(g2)[} < max{[u|(f1), [ul(f2)},
which proves that |u|(f1 + f2) < max{|u|(f1), [u|(f2)}

Theorem 2.1 Let G be a solid subspace of C(X) and let T be a locally convez topology on
G. Then, a linear functional v on G is T-continuous iff it is bounded on each By, f € G,
and |u| is T-continuous.

Proof: Assume that u is 7-continuous. Then, there exists a solid 7-neighborhhod W of
zero with W C {f € G : |u(f)| < 1}. Let f € G. There exists a non-zero element A € K
with f € AW. If g € G, |g| < |f|, then g € AW and so |u(g)| < |A|. This proves that u is
bounded on B;. Moreover |u| is T-continuous since W C {f € G : |u|(f) < 1}. Conversely,
if u is bounded on each By, f € G, and |u| is 7-continuous, then the set {f : |u|(f) < 1}
is a T-neighborhood of zero contained in {f : |u(f)| < 1} and so u is T-continuous.

For a net f5) in K* we write f5 | 0 if, for each z € X, the net (|fs(z)|) is decreasing
to zero.A linear functional u on Cy(X) is said to be T-additive if for each net in Cy(X)
with fs | 0 we have that imu(fs) — 0, and u is called bounded if it is continuous
with respect to the topology 7, of uniform convergence. For bounded u we define ||u|| =

sup{[u(f)I/|If]l : f € Co(X), f # 0}

Theorem 2.2 For a collection H of bounded linear functionals on Cy(X), the following
are equivalent:

(1) If fs 1 0, then u(fs) — O uniformly for u € H.

(2) If fs | O, then |u|(f5) — 0 uniformly for u € H.

Proof: Assume that (1) holds and that there exists a net (fs5)sea in KX, with f5 | 0, and
an € > 0 such that sup,cy |u|(fs) > €, for each é.

Claim: For each § there exists a 8 > 6,9 € Cy(X) and v € H such that |fs] < |g] < |fs]
and |u(g)| > e. In fact, there exists an h, [h| < |fs], and a u € H such that |u(h)| > e
For each § € A, define hg on X by

ho(@) = {fﬁ(m, if |fs(2)] < |h(z)]
g h(z), i |fa(z)| > |A(z)]
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As is is shown in the proof of Proposition 2.3 in [15], the function hg is continuous. Let
9s = fs — hp. Since |gg| < |f| for all 3, we have that lim gg(z) = 0 for all z. Also |gg,| <
|95,| when B > ;. By our hypothesis, there exists 8 > § such that |u(gs)| < |u(h)|.
Let now g = h + gg. It is easy to see that |f5| < |g| = maz{|R|, |gs|} < |fs|- Moreover
|u(g)| = |u(Rh) + u(gs)| = |u(h)| > €, which proves our claim.

Let now F be the family of all g € C(X) with the following property: There are 3, §, with
B > 6, and u € H such that |fs| < |g| < |fs| and |u(g)] > €. The family F is downwards
directed. In fact, given g1,go € F, there are indices §;,6;,7 = 1,2 and u;,uy € H such
that |fs,| < |g:| < |fs| and |ui(g;)| > € for i = 1,2. Let § > 81, 2. As we have shown
above, there are 8 > 6,9 € Cy(X) and v € H such that |fs] < |g] < |fs| and |u(g)| > €.
Now g € F and |g| < |g1],|g2|- Also, given € > 0 and z € X, there exists and index
b, such that |fs,(z)| < e. By our claim, there exists h € F with |h(z)| < |fs,(z)|. This
proves that 7 | 0 and so, by our hypothesis limge# |u(g)| = 0 uniformly for u € H, which
is a contradiction. This proves that (1) implies (2) and the result follows.

Theorem 2.3 For a subset M of M(X), the following are equivalent:
(1) If V510, then m(Vs) — o uniformly form € M.
(2) If V510, then |m|(Vs) — o uniformly for m € M.

Proof: Assume that (1) holds and let (V5)sca be a net of clopen subsets of X with V; | 0.
Suppose that there exists € > 0 such that sup,,c,, |m|(Vs) > € for all 8.

Claim: For each § € A there exist v € A,y > §m € M and D € K(X) such that
V, € D C Vs and |/m(D)| > e.

In fact, given 6, there exist m € H and a clopen subset V of Vs such that |m(V)| > e
Foreach y € A, let Z, =V, NV, W, =V, \ Z,. Then W,, | 0. By our hypothesis, there
exists v > 6 such that /m(W,)| < |m(V)|. Let D =V UW,. Then V, C D C V;. The
sets V' and W, are disjoint and so |m(D)| = |m(V)+m(W,)| = |m(V)| > ¢, which proves
our claim.

Let now F be the family of all clopen subsets D of X with the following property: There
are v,0 € A, with v > 6, and m € M such that V,, C D C V; and |m(D)| > €. Using our
claim we get that F is not empty and that F | . By our hypothesis, limper m(D) = 0
uniformly for m € M, which is a contradiction since, for each D € F, there exists m € M
with [m(D)| > e. This clearly completes the proof.

In view of [12] Theorem 3.4, every m € M, (X) defines a (S-continuous linear funtional
Um o0 Cy(X),um f) = [ ddm, and that the map m — u, from M, (X) to the dual space
of Cp(X) with the strict topology £, is an algebraic isomorphism. Moreover |[un,| = ||m||.

Theorem 2.4 For a set H of bounded linear functionals on Cy(X), the following are
equivalent:
(1) H is B-equicontinuous.
(2)  There exists a subset M of M.(X) such that
(a) H={um:me H}.
(b)  suppep [Im| < oo
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(¢c) IfVs |0, then m(Vs) — 0 uniformly form € M.
(3)  There exists a subset M of M,(X) such that
(a) H={un:meH}.
() supcy; Imil < co.
(c) IfVs |0, then |m|(Vs) — O uniformly for m € M.
(4) (a) supyey [Jul| < oo.
(b) If fs | 0, then u(fs) — O uniformly for u € H.

(5) (a) Subper |lul] < oo.
(b) If fs | 0, then |u|(fs) — O uniformly foru € H.

Proof: (1) is equivalent to (3) by [13], Theorem 2.6, (2) is equivalent to (3) by the preceding
Theorem, and (4) is equivalent to (5) by Theorem 2.2.

(3) implies (4): In fact, let f5 | 0,d > sup,,cp |Im||,€ > 0. Without loss of generality we
may assume that || fs|| < 1 for all §. For each 6, let Vs = {z : |fs(z)| > €¢/d}. Then V; | 0.
Choose 6, such that |m|(Vs| < e for all m € M and all § > §,. Now, for § > 6§, we have
that | [ fsdm| < e and the implication follows.

(4) implies (1): Let W be the polar of H in Cy(X). We will finish the proof by showing
that W is a §z-neighborhood of zero for each Z € Q. So let Z € Q and r > 0. There
exists a decreasing net (V5) of clopen subsets of X with ﬂ?gﬁ”x = Z. Then xy, | 0. Let
€ > 0 be such that €lu|| < 1 for all u € H. Choose u € K, |g| > r. By our hypothesis
there exists ¢ such that |u|(xy,) < 1/u| for all w € H. The closure in §,X of the clopen
set V = X \ Vs is disjoint from Z. If G = {f € Co(X) : ||f|| £ 7, ||f|lv < €}, then G is
contained in W. Indeed, let f € G. Then f = g1 + g2,91 = fxv,92 = fxv;. Since , for
u € H,we have that |u(g:)| < ||ul|||g1]] < 1, it follows that g; € W. Also |gz| < |pxv,| and
so |u(gz] < |ullu|(xv;) < 1 which shows that go € W. Thus f € W. This proves that W
is a Bz-neighborhood of zero and the result follows.

As a Corollary we get the following

Theorem 2.5 The dual space of (Co(X),8) coincides with the space of all bounded -
additive linear functionals on Cy(X).

Theorem 2.6 For a subset H of bounded linear functionals on Cy(X), the following are
equivalent:

(1)  H is uniformly o-additive, i.e. if f,, | 0, then u(f,) — 0 uniformly for u € H.

(2) If fo 10, then [u|(f,) — O uniformly for u € H.

Proof: Assume that (1) holds and that there exists a sequence (f,,) in Cy(X) and € > 0
such that sup,cy [u|(fn) > € for all n. As in the proof of Theorem 2.2, we show that for
each n there exists £ > n,u € H and g € C,(X) such that |fi| < |g| < |fal, Ju(g)] > e
Let now n; < ny < ...,my € H,gr € Cy(X) be such that |fr .| < |gi| < |fn,| and
|my(gk)| > €. Since g, | 0, we should have that u(gz) — 0 uniformly for u € H, which is
a contradiction. This clearly completes the proof.

The proof of the following Theorem is analogous to the proof of Theorem 2.3.
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Theorem 2.7 For a subset M of M(X) the following are equivalent:
(1) M is uniformly o-additive, i.e. if V, | 0, then m(V,) — 0 uniformly for m € M.
(2) If V.10, then |m|(V,) — 0 uniformly for m € M.

Theorem 2.8 For a subset H of bounded linear functionals on Cy(X), the following are
equivalent:
(1) H s [5;-equicontinuous.

(2) (a) supyep [lu|| < oo.
(b) If fn | 0, then u(fs) — O uniformly for u € H.

(3) (a) supyey |lul] < oo.
(6) If fn 1 O, then |u|(fn) — 0 uniformly foru e H.

Proof: (2) is equivalent (3) in view of Theorem 2.6.

(1) = (2): Assume that H is $;-equicontinuous. Since £, is coarser than the topology 7,
of uniform convergence, it follows that H is 7,-equicontinuous and so sup,g ||u| < oc.
Let now W be the polar of H in Cy(X) and let f, | 0. By [12], Theorem 3.7, The
sequence (f,) is B1-convergent to zero. If ) is a non-zero element of K, then AW is a
Br-neighborhhood of zero. Thus there exists n, such that fn € AW if n > n,. Hence for
n > n, we have sup .y |u(frn)| < |}

(3) = (1) : For every Z € Q there exists a decreasing sequence (V},) of clopen subsets of
X such that ﬂV,;BC'X = Z. Now the proof of the implication is analogous to the proof of
the implication (5) = (1) in Theorem 2.4.

As a Corollary we get the following

Theorem 2.9 The dual space of (Cy(X),B1) coincides with the space of all bounded o-
additive linear functionals on Cy(X).

Notation 2.10 a) For a net (fs) in Cy(X) we write fs |* 0 if, for each € > 0, the net
(V5), Vs ={z : |fs(z)| > €} is decreasing and (), Vfﬁ"x € Q.
b) For a decreasing net (Vs), of clopen subsets of X, we write Vs |* 0 if ﬂVg’B"X € Q.

Theorem 2.11 If f5 |* 0, then f5 25 0.

Proof: Without loss of generality we may assume that ||fs|| < 1 for all 6. Let now W be
a convex 3,-neighborhood of zero. Since 3, is coarser than ,, there exists an € > 0 such
that f € Wif ||f|| < e Let Z = ﬂ575ﬁ°x € §),. There exist a clopen subset D of X,
whose closure in §,X is disjoint from Z, and « > 0 such that

{F-IfI<L]fllp o} CcW.

Since D% is disjoint from Z, there exists a § such that D™ is disjoint from V;"*" and
so D(NV§ = 0. Let now v > 6. Then f,xy, is zero on D and so faxv, € W. Also
fyxi, € Wsinee || fyx7, || < e Thus f, € W for all v > 6, which completes the proof.
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Definition 2.12 An element m of M(X) is called u-additive if m(Vs) — zero if V5 [ 0.

Lemma 2.13 If m is u-additive, then m € M (X).

Proof: Let (A;)i;cr be a clopen partition of X. For each finite subset J of I, set V; =
Uies Ai; Dy = X\ V;. Then D; |* 0 and so m(X) — >_,.;m(A;) — 0. Thus m € M,(X)
by [12], Theorem 6.9.

The proofs of the following three Theorems are analogous to the ones of Theorems
2.2, 2.3, and 2.4 respectively.

Theorem 2.14 for a subset H of bounded linear functionals on Cy(X) the following are
equivalent:

(1) If Vs 0“0, then u(fs) — 0 uniformly for u € H.

(2) If Vs |*0, then |u|(fs) — O uniformly foru € H.

Theorem 2.15 For a subset M of M(X) the following are equivalent:
(1) If Vs |*0, then m(Vs) — 0 uniformly for m € M.
(2) If Vs 1™ 0, then |m|(Vs) — 0 uniformly form € M.

Theorem 2.16 For a subset H of bounded linear functionals on Cy(X), the following are
equivalent:
(1) H is B,-equicontinuous.
(2) H is [B.-equicontinuous.
(3) There exists a subset M of My(X) such that
(@) H={um: me M}.
(b) sup{||m|| : m € M} < .
() If Vs|*0, then m(Vs) — 0 uniformly for m € M.
(4) There ezists a subset M of Ms(X) such that
(a) H ={upn: me M}.
(b) sup{||m|: m € M} < co.
(¢) If Vs |*0, then |m|(Vs) — O uniformly for m € M.
(5) (@) supcy lul] < co.
(0) If fs 1* 0, then u(fs) — 0 uniformly for v € H.

(6) (a) supyer vl < oo.
(b) If f# 10, then |u|(fs) — O uniformly foru € H.

Let us say that a subset H of G = (Cy(X),7,) is solid if, u, € H and u € G with
|u| < |uo| imply that u € H

Theorem 2.17 If T is any one of the topologies B, 3, 1, Bu, B, then the space GT =
(Co(X),T) is a solid norm-closed subspace of G.
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Proof: Let u be in the norm-closure of G and let f5 | 0. We need to show that u(fs) — 0.
Without loss of generality we may assume that || f5|| < 1 for all §. Given € > 0, choose
u, € Gg with |lu — u,|| < e. There exists a §, such that |u,(fs)| < € if § > §,. Let now
6> 6,. Then |(u — uo) (fs)| < [[u— wol|lfs]l < ¢ and s0

[u(fe)| < max{|(u — uo(fs)|, |uo(fs)| < €.

This proves that u is S-continuous by Theorem 2.5. Using Theorem 2.2, it follows that
Gp is also solid. Hence the result follows for 8. The proofs for the other topologies are
analogous.

3 Sequential Convergence

For a locally convex topology 7 on a vector space E over K, we will denote by 7° the
finest locally convex topology on E having the same with 7 convergent sequences. This is
the locally convex topology which has as a base at zero the family of all absolutely convex
subsets W of E with the following property: If a sequence (z,) is T-convergent to zero,
then z, € W eventually. Clearly 7° is finer than 7 and 7§ is finer than 7§ if 7, is finer
than 9.

We have the following easily established

Lemma 3.1 Let 7 be a solid locally convez topology on Cy(X) and let (f,) be a T-null
sequence in Cy(X). If g, € By, for all n, then (g,) is T-null.

Theorem 3.2 For a locally conver topology T on Cy(X), the following are equivalent:
(1) 7° is locally solid.
(2) If (fa) is a T-null sequence in Cy(X) and if gn € By,, then the sequence (g,) is
T-null.

Proof: (1) = (2): Let (f,) be a 7-null sequence in Cy(X) and let g, € By,. Then (f,) is
7°-null and so (g,) is 7°-null by the preceding Lemma. Hence (g,) is 7-null.
(2) = (1): Let W be a convex T°-neighborhood of zero and let

V={feW:B;cW}

Since W is balanced, it follows easily that V is balanced. Also, if fi,f, € V, then
f=rh+f€V. Indeed, let g € By. Since |g| < max{|fi],|f2]}, there exist (by [15],
Proposition 2.4) g; € By,,i = 1,2, such that g = g; + go. Now g; € W and so g € W,
which proves that f € V and hence V is absolutely convex. We claim that V is a 7°-
neighborhood of zero. Assume the contrary. Then there exists a 7-null sequence (f,)
with f, ¢ V for all n. Since (f,) is also 7°-null, we may assume that f, € W for all n.
Now, for each n, there exists g, € By, with g, ¢ W. By our hypothesis, (g,) is a 7-null
sequence, which is a contradiction. This clearly completes the proof.
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Corollary 3.3 1) If7 is a locally solid topology on Cy(X), then 7° is locally solid.
2) Each of the topologies 33, 3%, 35, B is locally solid.

Theorem 3.4 §; = ;.

Proof: Let W be a ({-neighborhood of zero. By the preceding Corollary, there exists a
convex solid fj-neighborhood V' of zero contained in W. We will show that V is a [z-
neighborhood of zero for each Z € Q;. So let Z € ;. There exists a decreasing sequence
(W,) of clopen subsets of 3,X with W, = Z. Let V,, = W,, N X and X be a non-zero
element of K. Then Axy, | 0 and so the sequence (Ayy,) is fi-convergent to 0 by [12]
Theorem 3.7. Let n, be such that Axy, € V when n > n,. Since 3 < 75 = 7,, there
exists a non-zero element u of K such that

G={g€C(X):llgll < [pul} cV.

Let n > n,. The closure in ,X of the clopen set D = X'\ V, is disjoint from Z. Moreover,
if
G1={f € G(X) : Il < [AL Iflp < |uel}y

then G; C V. Indeed, let f € G;. Then f = fi+ fo, f1 = fxv.,fo = fxp. Now f € V
since |fi| < |Axv,| and V is solid. Also fo € V since || f2|| < |u|. Thus f € V. By [12],
Theorem 3.2, V' is a Bz-neighborhood of zero. This, being true for each Z € §2;, implies
that V' is a (3;-neighborhood of zero, which completes the proof.

Theorem 3.5 If X is locally compact, then the dual spaces of Cy(X) under the topologies
>, 0%, 85, 85 and B coincide.

Proof: Clearly we only need to show that, if u is a bounded o-additive linear functional
on Cy(X) and if a sequence (f,) in Cp(X) is Bo,-convergent to the zero function, then
u(fn) — 0. So let (f,) be such a sequence. Then (f,) is B,-bounded and hence T,-
bounded. But on 7,-bounded sets the topology 3, coincides with the topology 7. of
uniform convergence on compact subsets of X, Thus (f,) is T.-convergent to zero. Choose
A €K, |A| > sup, || f»|| and let € > 0. For each positive integer n, set

An =z : fe(@)] 2 ¢/ Jull}.

k>n

Clearly A, is open. Also it is closed. In fact, let z, ¢ A, and let Z be a compact
neighborhood of z, in X. There exists n; such that ||fi||z < ¢/|lu| if & > ny. Choose
a neighborhood Z; of z, contained in Z such that |fy(z) — fu(zo)| < €/||u|| for & =
L2,...,m,z € Z;. Now |fe(z) — fuz,)| < €/||u|| for all £ and all z € Z;. Since z, ¢ An,
there exists k£ > n such that |fi(z,)| < €/||u||. If now z € Z;, then |fr(z)| = |fr(zs)| <
¢/|lu|]| and so z ¢ A,. This proves that A, is clopen. Moreover A, | 0. Since w is
o-additive, there exists n, such that |u|(x4,) < €/|A| if n > n,. Let now n > n,. Then

|faXan! < |AX4,| and so Ju(faxa.)| < [Mlul(xa,) <€ Also || faxas|l < €/u
and thus |u(fnXxas)| < €. Therefore, |u(f,)| < € for n > n, and the result follows.
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Theorem 3.6 If X is locally compact, then 85 =7, iff X is K-pseudocompact (equiva-
lently pseudocompact).

Proof:  Assume that 35 # 7,. Then the set W = {f € Cy(X) : ||f|| < 1} is not
a [B;-neighborhood of zero. There exists a §,-null sequence (f,) with f, ¢ W for all
n. Let n; = 1. Choose z; such that |f,, (z1)] > 1. There exists ny > n; such that
|fe(z1)] < 1if n > no. Inductively we choose n; < ny <, ..., and a sequence (z) such that
mazi<j<k| fa(z;] < 1if n > ngyq and |fr,,, (Te41)| > 1. Note that (f,) is 7,-bounded and
80 it converges to zero in the topology 7c. Let gx = fn, and Ax = U5 {7 : |g5(z)| > 1}. As
in the proof of the preceding Theorem, Ay is clopen. Let Dy = A \ Axy1. Then zp € Dy
and { A, Dy, D,, ...} is an infinite clopen partition of X and so X is not K-pseudocompact.
Conversely, assume that 32 = 7, and that X is not K-pseudocompact. Then there exists
an infinite countable clopen partition (Z,) of X. If g, = Xz, fn = g1+92+. .., +gn, then
fn — f in the topology 7., where f(z) = 1 for all z. But then f, — f in the topology
B, and so (by our hypothesis) f, — f in the topology 7,. Thus, there exists n, such
that ||f — fall <1ifn > n,. Butifn >n,andz € Z,,then1 = |f, () -1 <1, a
contradiction. Hence the result follows.

Corollary 3.7 If X is locally compact and pseudocompact, then every bounded linear
Junctional on Cy(X) is o-additive.

4 The Spaces 6,X and p,X

Let @, be the collection of all finite clopen partitions of X and let & be any collection of
clopen partitions of X which contains ®, and which is directed in the sense that, if o, o
are in @, then there exists o € ® which is a refinement of both a; and as. For o = (V})er
in @, we set

Wa=| J{VixViziel}

Then the family {W, : @ € ®} is a base for a uniformity s on X which is compatible
with the topology of X. We will refer to Uz as the uniformity generated by ®. Let @, be
the collection of all clopen partitions of X and let ®; be the subcollection of all countable
members of ®.. We will denote by U, = UX 14 = U and U, = UX the uniformities
generated by ®,,®;, ®., respectively. It is well known (see [18] ) that (u,X,Ur**) and
(B,X,UPX) are the completions of (X,%) and (X,U,) respectively. Since 8,X is
compact, there is only one compatible uniformity on §,X. We will look at the completion
of (X,U,).

Notation 4.1 We will denote by 6,X the set of all z € 3,X with the following property:
For each clopen partition (V;);c; of X, there exists an i such that z € Vgﬁ”x. Equivalently

6, X = 1) (6.X \ H).

HeQw

11



12 Aguayo, Katsaras, Navarro

Lemma 4.2 X C ,X C v,X.

Proof: It is clear that X is contained in 6,X. Let z € (B,X \ v,X. There exists a
decreasing sequence (V;) of clopen neighborhods of z in 3,X with (), V, N X = 0. Let
Wo=VoNX,Dp=X\W,,Z1 =D; and Zpy1 = Dy \ Dy, for n > 1. Then (Z,) is a
clopen partition of X. Since Z,NW,, = 0, it follows that § = W;mx r}-Z—nﬂ"X = 14, ﬂ_Z_nﬁ"X
and so z ¢ Z:ﬂ"X, which implies that = ¢ §,X. Hence the result follows.

If now (A4;) is a clopen partition of X, then the family (EB"X) is a clopen partition of
8,X. Conversely, if (B;) is a clopen partition of 6,X and if D; = B; N X, then (D;) is a
clopen partition of X and B; = EB"X. Thus U, coincides with the uniformity induced on
X by U%X.

Theorem 4.3 (6,X,U?%) is the completion of (X,U,).

Proof: Since U?** is compatible with the topology of 8,X and X is dense in 6,.X, it only
remains to show that 2%% is complete. So let (y5) be a net in 8,X which is /%% -Cauchy.
Then (ys) is UP>X-Cauchy and hence there exists y € 5,X such that ys — v in 5,X. We

only need to show that y € 6,X. So, let (A;) be a clopen partition of X and B; = Z-e"x.
Then (B;) is a clopen partition of §,X. Since G = |J B; x B; is in U%* and (y;) is U%*-
Cauchy, there exists §, such that (ys,ys,) € G if § > §,. Let 1, be such that ys, € B,,.
Then ys € B;, if § > 6,. Thus y € B_if"x = A_inmx. This proves that y € §,X and the
result follows.

Definition 4.4 We will say that X is 0,-complete if X = 6,X, equivalently if the uniform
space (X,U,) is complete.

Theorem 4.5 Let X,Y be Hausdorff zero-dimensional topological spaces and let f :
X — Y be a continuous function. Then for the continuous extension % : B,X — 3,Y,
we have that fP(6,X ) C 8,X and so there exists a continuous extension f% : 6,X — 6,Y

of f.
Proof: Let z € 6,X and let (B;) be a clopen partition of Y. If 4; = f~1(B;), then (4;)
is a clopen partition of X. There exists an i such that z € _A_?B"X. Thus

T PFo ""_'_,GOY - Fo
o (@) € fa, AT c T < B,

which proves that fs, (z) € 6,Y. Hence the result follows.

Theorem 4.6 If X is ultraparacompact, then 6,X = X.

Proof: Let z € 3,X \ X and H = {z}. Since X is ultraparacompact, we have that Q = £,
and so H € ,, which implies that z ¢ 6,X.

Recall that a subset A of X is called K-bounded, or simply bounded, if every f € C(X)
is bounded on A. In view of [11], Proposition 3.1, A4 is bounded iff the closure of A in
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UoX is compact. Hence the notion of K-boundedness does not depend on the particular
choice of K.

Theorem 4.7 Let A be a bounded subset of X. Then:

(i) A is U,-precompact and hence U, -precompact.

(ZZ) _A_GOX _ _A"UQX _ :4—130X‘

(iii) U, =1 on A.
Proof: (i) Assume that A is not U.-precompact. Then, there exists a clopen partition
a = (A;) of X such that, for W = W,, A is not contained in W[S] for any finite subset
Sof A. If z € A;, then Wz] = A;. Hence there exists a sequence (z,)in A such that
Wiz, N Wz,] = 0 if n # m. For each n there exists an 4, such that W(z,] = A; . Let
A€K, A >1and f =37 A4 . Then f is continuous but not bounded on 4, which
1s a contradiction.

(i), (ili) The set B = A" is U?>-precompact since A is U -precompact. Also B
is U%-complete. Thus B is compact in 6,X, which implies that B is compact in v,X.
Therefore A% = A%* = 7% Moreover UPX = UfX on B (since B is compact) and
hence U, = U, on A. This completes the proof.

Lemma 4.8 If B is a bounded subset of 6,X, then A= BN X is a bounded subset of
X.

Proof: IfY =6,X, then v,X = v,Y. Now

Y —vo X —vo X _ E'on

AY =A"" cBY =

Since B is compact, its closed subset A% s compact and so A is a bounded subset
of X.

Definition 4.9 We say that X is a p,-space if every bounded subset of X is relatively
compact.

Theorem 4.10 6,(0,X) = 6,X.

Proof: LetY = 6,X. Then v,X = v,Y and 5,X = 3,Y. Assume that there exists an
z €6,Y \Y. Since z ¢ Y, there exists a clopen partition (4;) of X such that z ¢ -
for all i. If B; = Eeax = E’B"X NY, then (B;) is a clopen partition of Y. Since z € §,Y,
there exists an i such that z € Eﬁ"x, which is a contradiction since E'g"x C E—mx.
Hence the result follows.

Theorem 4.11 Both 6,X and v,X are p,-spaces.

Proof: LetY = 6,X,Z = v,X. Then v,Y = v,X,v,Z = Z,8,Z = B,X. If Bis a
bounded subset of Y, then B =B and s0 B is compact, which proves that Y is
a fi-space. Similarly, let A be a bounded subset of Z. Then 27 = A7 and so 47 is

compact. Thus the result follows.
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Let
sk = ﬂ{Y : X CY Cv,X,Ya p,-space}.

For G = u,X, we have that v,G = v,X. Let A be a bounded subset of G. Then
A% A 4 compact. If Y is a y,-space with X C Y C v, X, then A is bounded in ¥
and so A" is compact. Thus A" = A" and so

A= ﬂ{A X CY Cv,X,Y a p,space} C G

and so A° = A is compact, which proves that G is a p,-space. Clearly p,X is the
smallest of all u,-subspaces of v,X which contain X. Moreover u,X C 6,X. Thus X is
a po-space iff X = p,X.

Theorem 4.12 Let X,Y be Hausdorff zero-dimensional topological spaces and let f :
X —Y be a continuous function. Then for the continuous extension f% : B, X — .Y,
we have that fP(11,X) C X and so there exists a continuous extension f*° : X —

poY of f.

Proof: Let Z = (f%) Y (uoY). Then X C Z C v,X. Moreover Z is a p,-space.
Indeed, let A be a bounded subset of Z. Then, A is bounded in v,Z = v,X and so
A7% =A% i compact. The set B = f¥°(A) is bounded in 1,Y" and so B"" is compact.
Also,

Fe@) c B =B cuY

and hence A" C Z, which implies that A =T compact. Thus Z is a u,-space
and so u,X C Z. This completes the proof.

Theorem 4.13 Closed subspaces and Cartesian products of p,-spaces are p,-spaces.

Proof: It is easy to see that a closed subspace of a u,-space is a p,-space.

Let (X;) be a family of Hausdorff zero-dimensional p,-spaces and let A be a bounded
subset of Z = [[ X;. If m; : Z — X is the ith-projection, then A; = m;(A) is a bounded
subset of X;. Thus A; is compact and so B = [1B: is compact. Since A C B, the result
follows.

5 On the Space M(X)

Theorem 5.1 The following are equivalent :

(1) My (X) = M, (X).

(2) X is N-replete.

(8) For every non-zero m € M,(X) we have that supp(m) # 0.

(4) For every non-zero m € M,(X), supp(m) is a support set for m, i.e. m(V) =0
if the clopen set V' is disjoint from supp(m).
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Proof: The equivalence of (1) and (2) is proved in [18], pp 250-251. Also (2) = (4), by
[7], Theorem 3.5, and the implication (4) = (3) is trivial.

(3) = (2): Suppose that there exists an z € v,X \ X. Let u € M(8,X) be defined by
w(W)=1if z € W and (W) = 0 otherwise. Let

m: K(X) — K, m(V) = p(V>°7).
Then m € M,(X). Indeed, let (V) be a sequence of clopen subsets of X which decreases

to the empty set. Then z ¢ ﬂ(—T/'_n's"X since z € v,X. It follows from this that m(V},) =0
finally and so m is o-additive. By our hypothesis there exists a y € supp(m). Since y # z,
there are disjoint clopen neighborhoods Dy, D; of y,z in 8,X. If V is a clopen subset
of X contained in W = D; N X, then = ¢ 7% and so m(V) = 0, which implies that
|m|(W) = 0. But then supp(m) C X \ W, which leads to a contradiction since y € W.
Hence the result follows.

We will denote by M;(X) the space of all m € M (X) for which there exists a bounded
subset B of X which is a support set for m, i.e. m(V) =0if V is disjoint from B.

Theorem 5.2 M,(X) C M(X).

Proof: Let m € M,(X) and let A be a bounded subset of X which is a a support set
for m. Then A7~ = A% ¢ 0,X. If (V;)icr is a clopen partition of X, then (Vieqx) is a
clopen partition of §,X. Since A% i compact, there exists a finite subset J of I such
that 2% € e, 77" and so A C U,e; Vi = D. If B = Uy, Vi, then m(B) = 0 and

m(V;) =0if 7 ¢ J. Hence

m(X) =m(D)+m(B) =} m(Vi) = >_m(Vi).

icJ icl
Thus m € M,(X) in view of [12], Theorem 6.9, and we are done.

Let m € M(X). For Y a subspace of 3,X containing X, we define m¥ € M(Y)
by m¥ (V) = m(V N X). In case Y is one of the spaces 0,X, toX, voX, B,X, we write
mP, mte, m¥ mPe for m¥, respectively.

Theorem 5.3 a) The map m +— mP, from M,(X) to M,(6,X), is an algebraic isomor-
phism.

b) The map m — m®, from M,(X) to M,(v,X), is an algebraic isomorphism.

¢) The map m — mPe, from M(X) to M(B,X), is an algebraic isomorphism.

Proof; a) It follows from [12], Theorem 6.9, since, for each clopen partition (V;) of
X, the family (Vie"x) is a clopen partition of §,X.

b) If W is a clopen subset of v,X and V = W N X, then V"% = W. Now (b) follows
from the fact that, if (V},) is a sequence of clopen subsets of X which decreases to the

empty set, then (V.,:J"X) is a sequence of clopen subsets of v,X which decreases to the

15
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empty set.
c) It is trivial.

Theorem 5.4 M,(X) = M,(X) iff 6,X =v,X.

Proof: Assume that there exists an z € v,X which is not in §,X. Define m on K(X)
by m(V) =1if z € V% and m(V) = 0 otherwise. If (V,) is a sequence of clopen
subsets of X which decreases to the empty set, then z ¢ nﬁ”‘”‘, which implies that
m(V,) = 0 eventually. This proves that m is c-additive. Since = ¢ 6,X, there exists a
clopen partition (A;) of X such that z ¢ I{B"X for all i. Now m(X) =1 and m(4;) =0,
which implies that m ¢ M,(X). Conversely, assume that §,X = v,X and let m € M,(X).
Then m* € M,(v,X). As v,X is N-replete, we have that m¥> € M, (v,X) C M(v,X) =
M;(6,X) and so m € M,(X). This completes the proof.

Theorem 5.5 The following are equivalent :
(1) M(X) = M,(X).
(2) M(X) = M,(X).
(3) v,X = B,X.
W) 8.X =X
(5) X is K-pseudocompact (equivalently pseudocompact).
(6) Ewvery clopen partition of X is finite.
(7) Ewvery countable clopen partition of X is finite.

Proof: It is easy to see that (6) is equivalent to (7). Also (1), (3) and (5) are
equivalent by [12], Theorem 2.9, and [11], Proposition 3.3. In view of [5], Theorem 1.1,
(5) is equivalent to (6).

(6) = (4) If every clopen partition of X is finite, then I/, = U, and so the completions
of (X,U,) and (X,U,) coincide, i.e. §,X = 3,X.
(4) = (6) Assume that 6,X = 3,X and let (4;);c; be a clopen partition of X . Then the

family (Aiﬁox)ief be a clopen partition of the compact space 8,X = 3,X. There exists a
finite subset J of I such that 8, X = (J,c; A% I now i ¢ J, then A; =0.

(6) = (2) Let m € M(X) and let (A;):cr be a clopen partition of X. Then I is finite
and so m(X) = > m(A;), which proves that m € M;(X) by [12], Theorem 6.9.

Since (2) trivially implies (1), the result follows.

Theorem 5.6 M(X) = M, (X) iff X is compact.

Proof: It is clear that the condition is sufficient. To prove the necessity, suppose that
M(X) = M, (X). Then M(X) = M,(X) = M;(X) and so v,X = 5,X and X = v,X by
Theorems 5.5 and 5.1, and so X = 5, X, i.e. X is compact.

Theorem 5.7 (1) If M. (X)= M,(X), then ,X = X.
(2) If each clopen partition of X has non-measurable cardinal (in particular if X has
non-measurable cardinal), then the following are equivalent:
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(g} @.X =X,

(b) MT(X) = MS(X)

(¢c) X is N-replete.

(d) M-(X)= M (X).
Proof: (1) Assume that there exists an z € ,X \ X. Define m on K(X) by m(V) =1
if 2 € 77 and m(V) = 0 otherwise. If (A;):cr is a clopen partition of X, then the sets
Z;mx,i € I are pairwise disjoint and there is a unique ¢, such that z € A_z-oﬁ"x. Thus
> ierm(A4;) = m(A;,)) = 1 = m(X), which proves that m € M;(X). Now there exists a
decreasing net (W) of clopen subsets of 3, X with (|, Ws = {z}. If V5 = WsN X, then
Vs | 0 and m(V;s) = 1 for all 6. Hence m is not r-additive.
(2) We know that (c) is equivalent to (d). Also (c) implies (a) since X C 6,X C v,X. If
0,X = X, then the uniformity I/ is complete and hence X is N-replete by [18], Theorem
2.11. Thus (a) implies (c). It is clear that (d) implies (b). Also (b) implies (a) by (1).
This completes the proof.

Theorem 5.8 If m € M(X), then m € My(X) iff there exists a bounded subset B of X
such that supp(m®) c B =B,

Proof:  Assume that m € M,(X) and let B be a bounded support set for m. Let
2eG =X\ TB"B"X and let W be a clopen neighborhood of z in §,X contained in G.
If Ve K(B,X) is contained in W and D = V N X, then D is disjoint from B and so
= m(D) = mP=(V). This proves that |m?|(W) = 0 and so supp(m?) C B,X \ W,
which implies that z is not in supp(m?®). Hence supp(m?) C B,
Conversely, assume that supp(mP) C B”* for some bounded subset B of X. Since the
closure Z of B in X is also bounded and B™ = Eﬁ°x, we may assume that B is closed in
X. Let now V be a clopen subset of X disjoint from B. If W = 7ﬁ°x, Then W is disjoint
from B*. In fact, suppose that some point « of W is contained in B, There exists a

net (z5) in B converging to z. Since W is open in 3,X, there exists a §, such that z; € W
if 6 > 8,. But then, for § > §, we have that z; e WNB=(WNX)NB=VNB=40,a

contradiction. Thus W is disjoint from B* and so W is disjoint from supp(m®). Hence
m(V) = m(W) = 0, which proves that B is a support set for m. Thus m € M,(X) and
the result follows.

Let F be the family of all bounded partitions of unity on X and let F,. be the
subfamily of all members of F contained in C,.(X). Let m € M,(X) and let u,, be the
corresponding bounded linear functional on Cy(X). For w = (f;)ier € F, let

In(@) = i € I+ uml(fs) £ 0}, Smw) = |J {2 filz) £ 0}.
1€ Tm (w)
Theorem 5.9 For m € M (X), we have
supp(m) = [ ] Sm(w) = [] Sm(w).

weF WEFre

17



18 Aguayo, Katsaras, Navarro

Proof:  Suppose that z ¢ supp(m). There exists a clopen neighborhood V of z with
Im|(V) = 0. Take w = {xv, Xxve}. Since |[un|(xv) = |m|(V) = 0, we have that Sp,(w) C
{z: xve(z) #0} = V¢ and so z ¢ S,,(w). Conversely, suppose that z € supp(m) and let
w = (f;)ier € F. There exists 7 such that f;(z) # 0. The set

W = {y:|fi(v)| = |fi(z)[}

is a clopen neighborhood of . As z € supp(m), we have that |m|(W) % 0. Now for
v = fi(z), we have that |yxw| < |fi| and so

|um|(fi) 2 |um|(vxw) = [Hllum|Ocw) = |7]Im](W).

Thus ¢ € J,(w) and fi(z) # 0, which implies that z € S,,(w). This clearly completes the
proof.

Notation 5.10 For € M(8,X) and D C 8,X we define
|ul+(D) = sup inf |u|(Wy),

where the supremum is taken over the family of all decreasing sequences (W) of clopen
subsets of B, X with (W, C D.

Theorem 5.11 For an m € M(X), the following are equivalent:
(1) me M,(X).
(2) Im%|(B.X \ voX) =0.

Proof: (1) = (2): Let (W,) be a decreasing sequence of clopen subsets of 3,X, with
W, C BX \v,X =0, and let V,, = W, N X. Then V,, | B. Given € > 0, there exists n
such that |m|)(V,) < e. If W is a clopen subset of 3,X contained in W, then |m?(W)| =
|m(W N X)| < ¢, and so [mP|(W,) < e. This proves that [m?|,(8,X \ v,X) = 0.

(2) = (1) : Let (V,) be a sequence of clopen subsets of X, which decreases to the emptyset,

and let W, = V,>°". Then W, is disjoint from v,X and so inf, |m?|(W,) = 0.
Given € > 0, there exists n, such that [m%|(W,,) < e. Now, for n > n,, we have
im(V,)| = |mP(W,,)| < ¢, and so limm(V;,) = 0, which proves that m is o-additive. This
completes the proof.
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LARGE TIME ASYMPTOTIC TO POLYNOMIALS SOLUTIONS
FOR NONLINEAR DIFFERENTIAL EQUATIONS

CH. G. PHILOS, I. K. PURNARAS AND P. CH. TSAMATOS

ABSTRACT. This article is concerned with solutions that behave asymptoti-
cally like polynomials for n-th order (n > 1) nonlinear ordinary differential
equations. For each given integer m with 1 <m < n— 1, sufficient conditions
are presented in order that, for any real polynomial of degree at most m, there
exists a solution which is asymptotic at co to this polynomial. Conditions are
also given, which are sufficient for every solution to be asymptotic at co to a
real polynomial of degree at most n — 1. The application of the results ob-
tained to the special case of second order nonlinear differential equations leads
to improved versions of the ones contained in the recent paper by Lipovan
[Glasg. Math. J. 45 (2003), 179-187] and of other related results existing in
the literature.

1. INTRODUCTION

In the asymptotic theory of n-th order (n > 1) nonlinear differential equations,
an interesting problem is that of the study of solutions with prescribed asymptotic
behavior via solutions of the equation (™ = 0. This problem has been extensively
investigated during the last four decades for the case of second order nonlinear dif-
ferential equations; see Cohen [3], Constantin [4], Dannan [7], Hallam [8], Lipovan
[12], Mustafa and Rogovchenko [14], Naito [15, 16, 17], Philos and Purnaras [21],
Rogovchenko and Rogovchenko [25, 26], Rogovchenko [27], Rogovchenko and Villari
[28], Tong [31], Yin [33], and Zhao [34] (and the references cited in these papers).
For the case of linear second order differential equations, we restrict ourselves to
mention the paper by Trench [32]. The above mentioned problem has also been
treated for higher order nonlinear differential equations by several researchers; see
Kusano and Trench [9, 10], Meng [13], Philos [18, 19, 20], Philos, Sficas and Staikos
[22], Philos and Staikos [23], and the references therein. Note that the papers [18,
19, 20, 22, 23] are concerned with differential equations with deviating arguments
(including the ordinary differential equations as a particular case). We also mention
here the paper by Philos and Tsamatos [24] concerning nonlinear retarded differ-
ential systems. In the present paper, we are concerned with n-th order (n>1)
nonlinear ordinary differential equations and we study solutions that approach real
polynomials of degree at most n — 1. Qur work is essentially motivated by the
recent one by Lipovan [12] for the special case of second order nonlinear ordinary
differential equations; the results in [12] are extended and improved in our paper.

2000 Mathematics Subject Classification. Primary 34E05, 34E10; Secondary 34D05.
Key words and phrases. Nonlinear differential equation, asymptotic behavior, asymptotic prop-
erties, asymptotic expansions, asymptotic to polynomials solutions.
21
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Consider the n-th order (n > 1) nonlinear differential equation
(E) =™t = f(t.2(), t2%>0,

where f is a continuous real-valued function on [ty, o) x R.

Our purpose in this paper is to investigate solutions of the differential equation
(E), which behave asymptotically at co like real polynomials of degree at most 7— 1,
ie. like solutions of the equation z(™ = 0. More precisely, for each given integer
m with 1 <m < n — 1, we establish sufficient conditions in order that, for any real
polynomial of degree at most m, (E) has a solution defined for all large ¢, which
is asymptotic at oo to this polynomial and such that the first » — 1 derivatives
of the solution are asymptotic at co to the corresponding first n — 1 derivatives
of the given polynomial. We also provide conditions, which guarantee that every
solution defined for all large ¢ of (E) is asymptotic at oo to a real polynomial of
degree at most n — 1 (depending on the solution) and, in addition, the first n — 1
derivatives of the solution are asymptotic at oo to the corresponding first n — 1
derivatives of this polynomial. Moreover, we give sufficient conditions for every
solution z defined for all large ¢ of (E) to satisfy z(*~1)(t) — ¢ for ¢ — oo (and so
[=(2) /£ = [¢/(r — 1)1] for t — 00), where ¢ is some real number (depending on
the solution z).

Our main results are stated in Section 2. This section contains also the applica-
tion of the main results to the special case of the second order nonlinear differential
equation

(Eo) z(t) = f(t,z(t)), &>ty > 0.

The proofs of the main results are given in Section 3. Two general examples (Exam-
ples 1 and 2) are contained in the last section (Section 4). Example 1 is concerned
with the application of the main results to n-th order (n > 1) Emden-Fowler equa-
tions, while Example 2 illustrates the applicability of our first main result to a
specific second order superlinear Emden-Fowler equation.

We note, here, that the application of our main results to the second order
nonlinear differential equation (Eg) leads to improved versions of the ones given
recently by Lipovan [12] (and of other previous related results in the literature) as
well as to a result due to Rogovchenko and Rogovchenko [25] (see, also, Mustafa
and Rogovchenko [14]).

It is an open problem to extend the results of the present paper for the more
general case of n-th order (n > 1) nonlinear differential equations of the form

™(t) = F(t, (), 2 (£), ., s D(2)), t>t >0,

where F' is a continuous real-valued function on [to, 00) x R™. This problem remains
interesting still in the special case of second order nonlinear differential equations
of the form

a:”(t) = Fy(t, a:(t),a:’(t)), t>1p >0,
where Fj is a continuous real-valued function on [to, 00) x R2.
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2. STATEMENT OF THE RESULTS

Our main results are formulated as two theorems (Theorems 1 and 2 below), a
corollary of the first of these theorems, and a proposition. Our proposition plays
an important role in proving the second theorem (Theorem 2); however, it is also
interesting of its own as a new result.

Throughout the paper, we are interested in solutions of the differential equation
(E) which are defined for all large ¢, i.e. in solutions of (E) on an interval [T, 00),
where T' > ¢5 may depend on the solution. For questions about the global existence
in the future of the solutions of (E), we refer to standard classical theorems in the
literature (see, for example, Corduneanu [5], Cronin [6], and Lakshmikantham and
Leela [11]).

Theorem 1. Let m be an integer with 1 <m <n — 1, and assume that

&

eV e <p () +a0) foralt (4.2) € i 00) xR,

where p and g are nonnegative continuous real-valued functions on [to, o0) such
that

oo o0
(2.2) f " Ip(t)dt < co and f " q(t)dt < o0,
to to
and g is o nonnegative continuous real-valued function on [0, c0) which is not iden-
tically zero.
Let cg, ¢y, ..., Cm be real numbers and T be a point with T > to, and suppose that
there exists a positive constant K so that

* (s—T)"1 K & e
(2.3) [j,; %ﬁ_p(s)ds]sup{g(z):USZS—T;—!-;%}

N ./Tm %Q(s)ds <K.

Then the differential equation (E) has a solution = on the interval [T, ), which
is asymptotic to the polynomial cy + c1t + ... + cpt™ for t — oo, i.e.

(2.4) z(t) = co+ert + ... + cut™ + 0(1)  for t — oo,

and, in aeddition, satisfies

(2.5) z0)(¢) = Zz(z — 1=+ et +0(1) fort—-oo (j=1,..,m)
i=j

and, provided that m <mn — 1,

(2.6) z®)(t) = o(1) for t — o (k=m+1,..,n—1).

Corollary. Let m be an integer with 1 < m <n— 1, and assume that (2.1) is
satisfied, where p and q, and g are as in Theorem 1.

Then, for any real numbers co,c1,...,Cm, the differential equation (E) has a
solution z on an interval [T, co) (where T > max{ty, 1} depends on ¢y, c1,-..,Cm),
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which is asymptotic to the polynomial co + cit + ... + ct™ for t — oo, i.e. (2.4)
holds, and, in addition, satisfies (2.5) and (provided that m < n — 1) (2.6).
Proposition. Assume that

|2l

@D 1Al <p00 (F2) +a0) forall (1) € fo,00) xR,

where p and q are nonnegative continuous real-valued functions on [to, 00) such
that

(2.8) f p(t)dt < co and / q(t)dt < oo,
to to

and g is a continuous real-valued function on [0, co0), which is positive and increasing
on (0,00) and such that

® dz
(2.9) /1 ot

Then every solution z on an interval [T, 00), T > o, of the differential equation
(E) satisfies

(2-10) 2" D() = e+ o(1) for t — oo
and
(2.11) 2(t)= iy o(t™ 1) for t — oo,

(n—1)!

where ¢ is some real number (depending on the solution ).

Theorem 2. Assume that (2.7) is satisfied, where p and q are as in Theorem
1, and g is as in Proposition.
Then every solution = on an interval [T, 00), T > to, of the differential equation
(E) is asymptotic to a polynomial co + c1t + ... + cp_t*~1 Jor t — o0, e
(2.12) z(t) =co+ it +..+cp1t™ 1 4+ 0(1) fort— oo,
and, in addition, satisfies
n—1 o
(213) 2YV(t) =D i —1)..(i—j+ Vet +0(1) fort— oo
i=j
(Gj=1,..,n—1),
where cg, ¢y, ...,cn—y1 are Teal numbers (depending on the solution z). More pre-
cisely, every solution z on an interval [T,c0), T > tg, of (E) satisfies

(2.14) (t) =Co+Ci(t —T)+ ... + Coca(t —T)" 1 4+ 0(1) fort — o
and, in addition,

n—1
(2.15) D)= (i —1)..(i—j+ D)Ci(t — T)*7 +0(1) for t — oo

=7

(i=1,..,n—1),
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where
; [0 (g _ TYyn—1—i
(216) Ci= [a:(')(T)-}—(—l)“‘l_’ ]T ““—”((n _Tl)_z_)[ f(s,x(s))ds]

(i=0,1,....,n—1).

A combination of the corollary and Theorem 2 leads to the following result:

Assume that (2.7) is satisfied, where p and g are nonnegative continuous real-
valued functions on [to, 0o) such that (2.2) holds, and g is a nonnegative continuous
real-valued function on [0,00) which is not identically zero. Then, for any real
polynomial of degree at most n — 1, the differential equation (E) has a solution
defined for all large t, which is asymptotic at oo to this polynomial. Moreover, if,
in addition, g is positive and increasing on (0,00) and such that (2.9) holds, then
every solution defined for all large t of (E) is asymptotic at oo to a real polynomial
of degree at most n— 1 (depending on the solution).

Now, let us concentrate on the special case of the second order nonlinear differ-

ential equation (Ep). In this case, Theorem 1, the corollary, the proposition, and
Theorem 2 are formulated as follows:

Theorem 1A. Assume that
@1 152 <plog (2

)
where p and g are nonnegative continuous real-valued functions on [tg,c0) such
that

) +q(t) for all (t,2) € [ty,0) x R,

o0 o]
f tp(t)dt < co and / tg(t)dt < oo,

tg to
and g is a nonnegative continuous real-valued function on [0, c0) which is not iden-
tically zero.
Let ¢, ¢; be real numbers and T be a point with T > ty, and suppose that there
ezists a positive constant K so that

[/:O(S—T)p(s)ds] sup {g(z) :0<z2L % + I—;_,'Ll + Icll}

oo
+ / (s — T)g(s)ds < K.
g
Then the differential equation (Eq) has a solution = on the interval [T, o0), which
s asymptotic to the line co + c1t for t — oo, i.e.
(2.18) z(t) = co + c1t + o(1) for t — oo,
and, in aeddition, satisfies

(2.19) z'(t) =c1 +0o(1) for t — cc.

Corollary A. Assume that (2.17) is satisfied, where p and g, and g are as in
Theorem 1A.
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Then, for any real numbers co,c1, the differential equation (Eq) has a solution
z on an interval [T, co) (where T > max{to, 1} depends on co,c1), which is asymp-
totic to the line co + 1t for t — oo, i.e. (2.18) holds, and, in addition, satisfies
(2.19).

Proposition A. Assume that (2.17) is satisfied, where p and g are nonnegative
continuous real-valued functions on [tg, 00) such that (2.8) holds, i.e. such that

o0 e o]
/ p(t)dt < co and / g(t)dt < oo,
ta

2o

and g is a continuous real-valued function on [0, 00), which is positive and increasing
on (0,00) and such that (2.9) holds, i.e. such that

* dz
/1 ity
Then every solution = on an interval [T',00), T > to, of the differential equation
(Eo) satisfies
z'(t) =c+o0(l) fort— o
and
z(t) = ct +o(t) fort — oo,

where c is some real number (depending on the solution ).

Theorem 2A. Assume that (2.17) is satisfied, where p and g are as in Theorem
1A, end g is as in Proposition A.

Then every solution x on an interval [T, o), T > tg, of the differential eguation
(Eo) is asymptotic to a line coy+ cit for t — oo, i.e. (2.18) holds, and, in addition,
satisfies (2.19), where co, ¢ are real numbers (depending on the solution z). More
precisely, every solution z on an interval [T, 00), T > to, of (Ep) satisfies

z(t) = Co+ C1(t —T) +o(1) for t — co
and, in addition,
z'(t) = C1 + o(1) for t — oo,

where

Co=z(T) — /:O(s —T)f(s,z(s))ds and C;==z'(T)+ /;oc F(s,z(s))ds.

The main results in the recent paper by Lipovan [12] are formulated as two
theorems (Theorems 1 and 2). Theorem 1 in [12] is contained in Corollary A,
while Theorem 2 in [12] is included in Theorem 2A. Note, also, that Proposition A
has been previously established by Rogovchenko and Rogovchenko [25] (see, also,
Mustafa and Rogovchenko [14]).
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3. PROOFS OF THE MAIN RESULTS

In order to prove Theorem 1, we will apply the fixed point technique, by using
the following Schauder’s theorem (see Schauder [29]).

The Schauder theorem. Let E be a Banach space and X any nonempty
conver and closed subset of E. If S is a continuous mapping of X into itself and
SX is relatively compact, then the mapping S has at least one fized point (i.e. there
erists an T € X with ¢ = Sz).

In the proof of Theorem 1, we use the Schauder theorem with E = B([T, 0)),
where B([T,c0)) is the Banach space of all continuous and bounded real-valued
functions on the interval [T, c0) endowed with the sup-norm ||-||:

2]l = sup[h(z)]  for k € B(T,0)).

We need the following compactness criterion for subsets of B([T,cc)), which is a
corollary of the Arzela-Ascoli theorem (see Avramescu [1]; see, also, Staikos [30]).

Compactness criterion. Let H be an equicontinuous and uniformly bounded
subset of the Banach space B([T,o0)). If H is equiconvergent at oo, it is also
relatively compact.

Note that a set H of real-valued functions defined on the interval [T, ) is called
equiconvergent at oo if all functions in H are convergent in R at the point co and,
in addition, for every e > 0 there exists a 7" > T such that, for all functions £ in .
H, it holds

|h(t) — lim h(s), <e forallt>T".
§—00

To prove our proposition we will make use of the well-known Bihari’s lemma (see
Bihari [2]; see, also, Corduneanu [5]). This lemma is given here in a simple form
which suffices for our needs.

The Bihari lemma. Assume that
t
h(t) < M + f 1(s)g(h(s))ds for t > Ty,
To

where M is a positive constant, h and p are nonnegative continuous real-valued
functions on [Ty, 0), and g is o continuous real-valued function on [0,00), which
15 positive and increasing on (0,00) and such that

k=

h(t) < G1 (G(M) + f t ,u(s)ds) for t > Ty,

To
where G is a primitive of 1/g on (0,00) and G~ is the inverse function of G.

Then

Now, we are in the position to proceed with the proofs of our main results.
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Proof of Theorem 1. The substitution
y(t) = z(t) — (co + c1t + ... + cmt™)
transforms the differential equation (E) into the equation

i=0

m
(E*) ™M) =f (t,y(t) + th") , £21>0.
We immediately see that

Y@ =20 - Y i - 1).(i—j+ Det™  (=1,..,m)
i=j
and, provided that m <n —1,
yO@O) =s®() (k=m+1,...n—1).

Hence, by taking into account (2.4), (2.5) and (2.6), we conclude that all we have
to prove is that the differential equation (E*) has a solution y on the interval [T, co)
with

(3.1) Jim y(P)(t) =0 (p=0,1,..,n—-1).

Consider the Banach space E = B([T, o)) endowed with the sup-norm [I-l, and
define

Y={ycE: |y|<K}.
Clearly, Y is a nonempty convex and closed subset of E.
Now, let y be an arbitrary function in Y. For every t > T, we have

ly(®) + g Gt Iy(t)l Z lei] el
tm tm— i — Tm Tm—z"
=0 =0
Consequently
t o ctt
g (Iy( )+t§’=°c‘ I) <O foreveryt>T,

where

659(00,01, ,Gm.TK)—SuP{g(z) 0<z§Tm+ZTm-4}

On the other hand, (2.1) gives

f (t, y(t) + iciti) < p(t)g (Iy(t) + 2% c;t"f) +g(t) fort>T.

tm
i=0

So, it follows that

7 (t,y(t) ¥ fc,t)

=0

(3.2) <Op(t)+¢(t) forallt>T.

Thus, in view of (2.2), we conclude that

fm (S _ T)'n—l mn s . )
- W‘f s,y(s)+Zc,—s ds existsin R

i=0
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and, more generally,

: %{i (s,y(S)-!-g;cgsi)ds existsin R (p=0,1,..,n—1).

Furthermore, by using (3.2), we obtain for every t > T,
® (g — ¢)n—1 n .
/: (—(71-—_2)17—)‘ (s, y(s) + ;c,-s') ds
S'[wgs(n_—f):)—_!i f (s,y(S)Jchasi) ds
oC G n—1
5]; (_(n_—Ill)_— (s y(s)+zc¢s)
s— Tyl n—1
< GL ( e )1)' (s) ds+/ (= )1)‘ g(s)ds.

Hence, by taking into account (2.3), we have

(3-3) l] (s 1)' (S,y(s) + Zcisi) ds

i=0

<K foreveryt>T.

As (3.3) is true for any function y € ¥, we can immediately conclude that the
formula

(Sy)(®) = (- 1)"f Ef——-—):)—:l (s,'y(s) + Zcisi) ds fort>T

i=0

defines a mapping S of Y into itself. We shall prove that this mapping satisfies the
assumptions of the Schauder theorem.

First, we will show that SY is relatively compact. Since SY CY, it follows
mmedaately that SY is uniformly bounded. Moreover, for each functlon yinY,
we can use (3.2) to derive for all ¢t > T

= %——f (s,y(s) + Zc,s") ds
t i i=0
2 (s —gy-l

——|f| sy(s)+ ;s' )| ds
A (n—1)! (‘5 y(s) ;Ct )

< o [ 0 poas [ s

So, by taking into account (2.2), we can easily verify that SY is equiconvergent,
at co. Furthermore, by using again (3.2), for any y € Y and every #;,t; with

I(5y)(2) — 0]

INA
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T <t <ts, we get

[(Sy)(t=) — (Sy)(t2)l =

to

(S(n tz)l)l_l (s,y(s) + Zﬁisi) ds

i=0

;e o S )
i=0
LI o) e
tz e : i=0
_fm [/;m (—'i-;_-r)%):z (s,y(s) +g;ci$i) ds} dr
ol I =7y~ 7’)"—2 & o
] NCED)E 2)\, s,y(s) + Zc,.s ds| dr
" =0
to — 7. n—2 bii: 7
L[ oSl
i=0
<O ’ [/-cc (ST._ﬂTn):zp(s)ds] dr
TN

Thus, because of (2.2), it follows that SY is equicontinuous. By the given com-
pactness criterion, SY is relatively compact.
Next, we shall prove that the mapping S is continuous. Let y €Y and (y,,)l,>1
be an arbitrary sequence in ¥ with
lim y, =y.

V—00

By (3.2), we have

)f (ta yy(t) G iciti)
=0

and hence, by taking into account (2.2), we can apply the Lebesgue dominated
convergence theorem to obtain, for each t > T,

UILHgOV/tco %—__1_5)_1"); (s Y (8) + ZQS ) ds

=0
(S )'n -1 m ;
L S (s, y(s) + gqs ) ds

<Op(t)+q(t) foreveryt>T andforall v>1

So, we have the pointwise convergence

Jim (Sy,)(2) = (Sy)(t) for¢>T.
It remains to verify that the convergence is also uniform, i.e.
(34) Jim Sy, = Sy.
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To this end, let us consider an arbitrary subsequence (Sy,, )u>1 of (S¥),5,;- Since
SY is relatively compact, there exists a subsequence (Sym\v)y)1 of (Syu,),>, and
a u € F so that

Lim S; Yus, = -

V—o0
As the uniform convergence implies the pointwise convergence to the same limit
function, we always have u = Sy. We have thus proved that (3.4) holds. Conse-
quently, S is continuous.
Finally, the Schauder theorem implies that there exists a y € ¥ with y = Sy, ie.

y(t) = (— 1)“[ (s—):)_'l- (s,y(s) + Zm:cisi) ds foreveryt>T.

i=0
Then we immediately obtain

y™(@) = f (t, y(t) + iqti) forallt> T,

i=0
which means that y is a solution on the interval [T, co) of the differential equation
(E*). We also have

yO@E) = (—1)"r t°° ((i;__?n-__lT_)?f (s,y(s) + zZi;c,-si) ds forallt>T

(p=0,1,...,n-1)

and consequently the solution y satisfies (3.1).
The proof of the theorem is complete.

Proof of the corollary. Let cp,cy,-..,Cm be given real numbers. Consider a
positive constant K so that

i=0
(Such a K exists because of the hypothesis that g is not identically zero on [0, 0).)
By (2.2), we can choose a point 7' > max{ty, 1} such that

(s —T)*! K ®(s—T K
fT S preeMs <o ad [ (n_l), EoTP s < K.

Gossup{g(z): USZSK‘FZfCil} > 0.

Since T' > 1, we have

+ZTm - _K+Z|c,1

i=0
and consequently

IA

2

o
=y

g(z) : 052§K+Z[q[}5

=0
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Thus, we obtain

® (s—T)""1 R (s=T)"=1 K K
L STrronfes [T don s o f <

ie. (2.3) is satisfied. So, the corollary follows immediately from Theorem 1.

Proof of the proposition. Let z be a solution on an interval [T,00), T > to, of
the differential equation (E). Then (E) gives

—b=~T) & t(t— s)n1
I(t)=§(T)z”(T)+ fT (—(—T%f(s,m(s))ds fort > T.

Thus, by using (2.7), we obtain for every ¢t > T

n—1 i t — oyn—1
0 < 3 S5 @)+ [ EZD 16 atepias
2 .

n—-1 ;
1

4
n—1 ti
x

i=0

IA

20w+ [t oo (22) 4 g09)]

z® (T)I -+ i _/,; - q(s)ds] F -1 " _p(s) g (I:c(s) l) ds.

(n—1)! 7 (n—1)17 \ s»1

IA

So, we have

B _ = 1 . 1 [ '
l:i(Tzl = [ZE e [0 @) + (n— 1) j; Q(“")dsJ * f (anS)l)!g (l:fﬂl) e

T

for all t > T. Thus, because of the second assumption of (2.8), there exists a
positive constant M so that

t ¢ s
(3.5) % <M +/;1 (npi )1)!_9 (I:;(ﬂl) ds foreveryt>T.

Next, we define
? du
= p—— ) i .

G(2) fM 5 frezM
(Note that g(u) > 0 for u > M > 0.) Clearly, G is a primitive of the function 1/g
on [M, co). We observe that G(M) = 0 and that G is strictly increasing on [M, 00).
Moreover, we see that (2.9) implies G(c0) = co. Thus, the range of G is equal to
[0,00). Let G~ be the inverse function of G. The function G- is also strictly
increasing on its domain [0, ), and the range of G~ equals to [M, co). In view of
the above observations, we can take into account (3.5) and use the Bihari lemma
to obtain

Em(t)l =of k P(S) —1 1 i
SN AT —_ e b R £
P} G G(M) +] ( 1)!ds =G ( 1! / p(s)ds) fort>T
Hence, by taking into account the first assumption of (2.8), we get
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i.e. there exists a positive constant N so that

|lz(@)]

Now, by using (2.7) and (3.6), we derive
|=(2)]

1562601 < 200 () +a(0) <p() sup o) +a(t) for 2T,

Thus, because of (2.8), it follows immediately that
/:o f(s,z(s))ds exists (as a real number).
But, (E) gives
(D (1) = 2*~)(T) + /: f(s,z(s))ds fort>T.
Therefore,

Tim 1) (t) = p(»-1) (T) + /00 f(s, a:(s))ds =ceR,
T

t—o0
ie. (2.10) holds. Finally, by the L’ Hospital rule, we obtain

I(t) — 1 z (n—1) o
f—ootn—1 (n— 1)!35201 (t) -

(n—1)!

and consequently the solution z satisfies (2.11).
The proof of the proposition has been completed.
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Proof of Theorem 2. Let = be a solution on an interval [T,00), T > tg, of the
differential equation (E). We observe that (2.2) implies (2.8). Thus, as in the proof
of the proposition, we conclude that there exists a positive constant N such that
(3.6) holds. (Note that this conclusion can be obtained from the proposition itself,
since it guarantees that Jim [#(t)/¢*~!] = C for some real number C.) By virtue

of (2.7) and (3.6), we have

1200 <500 () +a(0) <50 sup o(2) +a(t) fore>T.

So, by taking into account (2.2), we see that

o [P la=Ty _
L; = fT mf(s, :z:(s))ds ('l, =0,1, ey T2 — 1)

are real numbers.
Now, from (E) it follows that

] (t _ S)'n—l

_N0=T)
(37) z(t) = ; -—-—i-!-—:r( )(T) + . m-

f(s,z(s))ds fort>T.
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For every t > T, we obtain

+— n-—1
i ((n o £ a()as
t s n—1
— [ ((n )1)' [ Fin, a:('r))d’r]

- t(nf):; / Flry2(r))dr — f L );)',2 [ sm f(r,:r:(r))dr} ds

_ (t—T)™1 t(t—s)n2
T (m—1) Fig = r (n—2)

[ g6 :z:(r))dr] ds.

Let us assume that n > 2. Then we derive, for ¢ > iy

t (¢ gym—1
o E(n__'i)f)!_f(S,iﬂ(S))ds
_ myn—1 i omed ~
— (t(n f)}_)! Lp 1+ - %——S)A?Td [ (r—s8)f(r, x(r))drjl
- n—1 s n—2
- (f(n f)l)! Ln-1— (t(n T)z)' f (r — T)f(r,z(r))dr
n—3 oo
T (i’ﬂ —)3)! [ _/S. (r—s)f (T,:G(T))dr] ds
_ -1 (t — T)»2

- (n—1)! e (n—2)! L2

Tt (i;f);)_!a [ f =880 m(r))dr} ds

If n > 3, then we can apply the same arguments to obtain, for every t > T,

) (t(; . Bt )
_ (t T)n -1 (t —- T)n-—2 (t - T)n—3
T EeO T e et gy s

= /ﬂ: t (t(,,: j):)_!4 [ fs ” (T ) Fir, :B(T))dr]

Following this procedure, we finally conclude that

t t— g)y»—1
[ et
n—1 n=2 —LJ"
_(t(n T)) =1L, 1+(t_(£)7—( DLy +.. +( T) ()" Ly

e T) (—1)"2L; + (— ln—lf [ (In-s);‘)'?f(r, r))dr] ds
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for all £ > T. Furthermore, we have for ¢t > T

t (t - S)n—l

- (—n__—i)Tf(S,-’c(S))ds
(t T) n—1—i n—1 * o ( s)n—2 r p I
g R L = O o e(r))ar] as

- [T [T f0,a(r))ar] a

n—1 i = ([ 1=
“z(t T)( 1)n—1~zL +( 1)‘"'—1 s %—— (T,-’E(T))d'r

+ (-1)* [m (( t):)_' f(r,z(r))dr

i=1

= ni _(—TZ( 1)n—1—zL o ( l)n—lLo + (_l)n‘/t ( t)n— f{’l",m(r))dr

i=1 (n 1)'
g (i:—T)2 n— —IL +( 1)"’/ (T ):)1 f(’r 33(7'))

Thus, (3.7) yields

n—1
o0 =X G O+ orn a7 sy

i=0

for all £ > T'. Hence, by taking into account the definition of L; (i =0, 1,...,n — 1)
as well as (2.16), we see that

(3.8) z(t) = Z Ci(t - T) + (—=1)" /’°° %f(r,m(r))dr for all ¢ > T
=0 t N
Since

tim [ EU 1 atrpar =,

it follows from (3.8) that the solution z satisfies (2.14). Moreover, from (3.8) we
obtain

n—1

39) z0@) = i(i—1)..(i—j+1)Ci(t — )7
i=j

i [ r—t)y»1

(g | YT

=1} ¢ (n—1-j)
Thus, in view of the fact that

C(r -1

tmoo Jy  (n—1-3)!

(3.9) guarantees that the solution z satisfies also (2. 15). Finally, it is clear that
there exist real numbers ¢y, ¢1, ..., ¢,—1 S0 that

Cot+Crt =T+ .. + Coa(t—T)* T =cy + 1t +... + ¢,_1t™!
and so z satisfies (2.12) and, in addition, (2.13).

frz(r))dr fort>T (j=1,..,n-1).

flrz(r))dr=0 (j=l. n—1),
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The proof of the theorem is now complete.

4. EXAMPLES

Example 1. Consider the n-th order (n > 1) Emden-Fowler equation
(D) 2™ (t) = a(t) |z(t) sgnz(t), t>to >0,

where a is a continuous real-valued function on [to, o0) and « is a positive real
number.

An application of Theorem 1 to the differential equation (D) leads to the follow-
ing result: Let m be an integer with 1 <m < n — 1, and assume that

(4.1) f, = gty 0 dt < oo,

Let co,c1, ..., cm be real numbers and T be a point with T > to, and suppose that
there ezists a positive constant K so that

® (g=Ty1 K el Y

Then (D) has a solution z on the interval [T, c0) with the property: (P(z)) = is
asymptotic to the polynomial co +cit + ... +cmit™ for t — oo, i.e. (2.4) holds, and,
in addition, it satisfies (2.5) and (provided that m < n —1) (2.6).

Also, by applying the corollary to the differential equation (D), we arrive at
the next result: Let m be an integer with 1 < m < n — 1, and assume that (4.1)
is satisfied. Then, for any real numbers cg, e, ..., Cm, (D) has a solution = on an
interval [T',00) (where T > max{to,1} depends on cg,ci, ..., cm) with the property
(P(z)).

Moreover, we can apply the proposition for the differential equation (D) to obtain
the result: If

(4.2) f ” gty la(t)| dt < oo

to

and vy < 1, then every solution = on an interval [T,c0), T > tq, of (D) satisfies
(2.10) and (2.11), where c is some real number (depending on the solution )

Furthermore, by an application of Theorem 2 to the differential equation (D),
we can be led to the following result: Assume that

o0

(4.3) _[ =D+ |g(2)| dt < oo
to

and that v < 1. Then every solution z on an interval [T,c0), T > to, of (D) is
asymptotic to a polynomial co + 1t + ... + cp_1t"7! for t — oo, i.e. (2.12) holds,
and, in addition, satisfies (2.13), where cg, ¢, ...,Cn—1 are Teal numbers (depending
on the solution ). More precisely, every solution = on en interval [T,00), T > tg,
of (D) satisfies (2.14) and, in addition, (2.15), where

o0 (8 - T)n—l—i

Gi= § [0+ aymims [T o(6)"sgus(sas]

(i=0,1,..,n—1).
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Now, let us consider the particular case of the Emden-Fowler equation (D) with
a(t) =t u(t) for t > to,
where A is a real number and g is a continuous and bounded real-valued function
on [tg, c0). In this case, we have
la(t)| < 6t* for every ¢ > tq,
where 6 is a positive constant. We immediately see that (4.1) is satisfied if A <

—(n + m7). Moreover, we observe that (4.2) holds if A < —[1 + (n — 1)4], while
(4.3) is fulfilled if A < —[1 + (n — 1)(1 +v)].

Example 2. Consider the second order superlinear Emden-Fowler equation
(d) ="(t) = a(t)[z(t)]*sgnz(t), ¢ >t >0,
where a is a continuous real-valued function on [to, o).

By applying Theorem 1 (or, in particular, Theorem 1A) to the differential equa-
tion (d), we are led to the following result: Assume that

(4.4) ft - 3 |a(t)| dt < oco.

1]
Let cq,c; be real numbers and T be a point with T > to, and suppose that there
exists a positive constant K so that

2
(4.5) A (5 -+ al) <k,
where
(4.6) A(T) = /; (s — T)s2 |a(s)| ds.

Then (d) has a solution x on the interval [T, o), which is asymptotic to the line
cp + cit for t — oo, i.e.

4.7) z(t) = co + it +o(1) for t — oo,
and, in addition, satisfies
(4.8) z'(t) =e1 +0(1) fort — .

Now, assume that (4.4) is satisfied, and let ¢o,c; be given real numbers and
T = 1o be a fixed point. Moreover, let A(T) be defined by (4.6). In the trivial
case where A(T") = 0, (4.5) holds by itself for any positive constant K. So, in what
follows, it will be supposed that A(T') > 0. We easily verify that, for every positive
constant K, (4.5) can equivalently be written as

T2
4. B — 2<o.
49) K42 (el +lalT) - gio] Ko+ (el +lal T <0
Consider the quadratic equation
T
= & 2 S sl 2 =
0e) = +2 | (ol + [ea]T) ~ g | w0+ (ol +[ea| T)* =0

n the complex plane, and let A be its discriminant, i.e.

a={2[tal + el ) - 5%] }2 — 4 (Jeol + |ex] TY?.
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We immediately find
4 i ‘i
A=4——1r1 |- T+ ——1.
In the case where A < 0, the equation Q(w) = 0 has no real roots and consequently
w) > 0 for all w € R. Thus, in this case, there is no positive constant K so that
(4.9) is fulfilled. If A = 0, i.e.

(4.10) ol +laal 7 = o,
then the equation Q(w) = 0 has exactly one (double) real root wy given by
N
4A(T)

Hence, in case that (4.10) holds, (4.9) is fulfilled (as an equality) for K = wp > 0,
Le. there exists a positive constant K so that (4.9) is satisfied. Next, let us consider
the case where A > 0, i.e.

Vi
Then the equation Q(w) = 0 has the real roots
‘ B T2 0 TZ 7
and
12 T I 7= ]

with w; < ws. For each real number w, it holds
Qw) <0 ifand only if wy < w < ws.
By (4.11), we have
~(eol el )+ 1z > =l + e T) 4 2 >0
and consequently w, is positive. Therefore,
w) <0 for any w € (max{0,w; },ws].

So, provided that (4.11) is satisfied, there exists a positive constant K so that (4.9)
holds. We have thus proved that there exists a positive constant X so that (4.9)
(or, equivalently, (4.5)) is satisfied if and only if either (4.10) or (4.11) is fulfilled,
ie. if and only if

T2
which can equivalenlty be written as
T2
(4.12) A(T) (ool + |ea| T) < -

We observe that (4.12) is also true if A(T) = 0. After the above, we can have the
following result:
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Assume that (4.4) is satisfied, and let cp,c; be Teal numbers and T > to be a
point so that (4.12) holds, where A(T) is defined by (4.6). Then (d) has a solution
T on the interval [T, 00), which satisfies (4.7) and (4.8).

Finally, let us consider the particular case of the Emden-Fowler equation (d)
with

a(t) = t*u(t) fort > to,
where A is a real number and p is a continuous and bounded real-valued function
on [tg, o). In this case, there exists a positive constant 6 so that

la(t)] < 6t for every t > to.
We immediately see that (4.4) is satisfied if A < —4. Furthermore, assume that
A < —4 and let ¢y, c; be real numbers and T >t be a point. Here, we have
TA+4

A= [T aeds <0 [ a= s 0 T

So, (4.12) is satisfied if
(A +3)(A +4)

A2 <
T4 (|ag] +]ea| T) < 20

REFERENCES

(1] C. AVRAMESCU, Sur I’ existence des solutions convergentés de systémes d’
équations différentielles non linéaires, Ann. Mat. Pura Appl. 81 (1969), 147-168.

[2] I. BIHARI, A generalization of a lemma of Bellman and its application to *
uniqueness problems of differential equations, Acta Math. Acad. Sci. Hungar. 7
(1956), 81-94.

[3] D. S. COHEN, The asymptotic behavior of a class of nonlinear differential
equations, Proc. Amer. Math. Soc. 18 (1967), 607-609.

[4] A. CONSTANTIN, On the asymptotic behavior of second order nonlinear
differential equations, Rend. Mat. Appl. 13 (1993), 627-634.

[5] C. CORDUNEANU, Principles of Differential and Integral Equations, Chelsea
Publishing Company, The Bronx, New York, 1977.

[6] J. CRONIN, Differential Equations: Introduction and Qualitative Theory,
Second Edition, Revised and Expanded, Marcel Dekker, Inc., New York, 1994.

[7] F. M. DANNAN, Integral inequalities of Gronwall-Bellman-Bihari type and
asymptotic behavior of certain second order nonlinear differential equations, J.
Math. Anal. Appl. 108 (1985), 151-164.

[8] T. G. HALLAM, Asymptotic integration of second order differential equations
with integrable coefficients, STAM J. Appl. Math. 19 (1970), 430-439.

[9] T. KUSANO AND W. F. TRENCH, Global existence theorems for solutions
of nonlinear differential equations with prescribed asymptotic behavior, J. London
Math. Soc. 31 (1985), 478-486.

[10] T. KUSANO AND W. F. TRENCH, Existence of global solutions with
prescribed asymptotic behavior for nonlinear ordinary differential equations , Ann.
Mat. Pura Appl 142 (1985), 381-392.

[11] V. LAKSHMIKANTHAM AND S. LEELA, Differential and Integral In-
equalities, Vol. I, Academic Press, New York, 1969.



40 CH. G. PHILOS, I. K. PURNARAS AND P. CH. TSAMATOS

[12] O. LIPOVAN, On the asymptotic behaviour of the solutions to a class of
second order nonlinear differential equations, Glasg. Math. J. 45 (2003), 179-187.

[13] F. W. MENG, A note on Tong paper: The asymptotic behavior of a class
of nonlinear differential equations of second order, Proc. Amer. Math. Soc. 108
(1990), 383-386.

[14] O. G. MUSTAFA AND Y. V. ROGOVCHENKO, Global existence of so-
lutions with prescribed asymptotic behavior for second-order nonlinear differential
equations, Nonlinear Anal. 51 (2002), 339-368.

[15] M. NAITO, Asymptotic behavior of solutions of second order differential
equations with integrable coefficients, Trans. Amer. Math. Soc. 282 (1984),
577-588.

[16] M. NAITO, Nonoscillatory solutions of second order differential equations
with integrable coefficients, Proc. Amer. Math. Soc. 109 (1990), 769-774.

[17] M. NAITO, Integral averages and the asymptotic behavior of solutions of
second order ordinary differential equations, J. Math. Anal. Appl. 164 (1992),
370-380.

[18] CH. G. PHILOS, Oscillatory and asymptotic behavior of the bounded so-
lutions of differential equations with deviating arguments, Hiroshima Math. J. 8
(1978), 31-48.

[19] CH. G. PHILOS, On the oscillatory and asymptotic behavior of the bounded
solutions of differential equations with deviating arguments, Ann. Mat. Pura Appl.
119 (1979), 25-40.

[20] CH. G. PHILOS, Asymptotic behaviour of a class of nonoscillatory solutions
of differential equations with deviating arguments, Math. Slovaca 33 (1983), 409-
428,

[21] CH. G. PHILOS AND L K. PURNARAS, Asymptotic behavior of solu-
tions of second order nonlinear ordinary differential equations, Nonlinear Anal. 24
(1995), 81-90.

[22] CH. G. PHILOS, Y. G. SFICAS AND V. A. STAIKOS, Some results on
the asymptotic behavior of nonoscillatory solutions of differential equations with
deviating arguments, J. Austral. Math. Soc. Series A 32 (1982), 295-317.

[23] CH. G. PHILOS AND V. A. STAIKOS, A basic asymptotic criterion for
differential equations with deviating arguments and its applications to the nonoscil-
lation of linear ordinary equations, Nonlinear Anal. 6 (1982), 1095-1113.

[24] CH. G. PHILOS AND P. CH. TSAMATOS, Asymptotic equilibrium of re-
tarded differential equations, Funkcial. Ekvac. 26 ( 1983), 281-293.

[25] S. P. ROGOVCHENKO AND Y. V. ROGOVCHENKO, Asymptotic behav-
ior of solutions of second order nonlinear differential equations, Portugal. Math.
57 (2000), 17-33.

[26] S. P. ROGOVCHENKO AND Y. V. ROGOVCHENKO, Asymptotic behav-
ior of certain second order nonlinear differential equations, Dynam. Systems Appl.
10 (2001), 185-200.

[27] Y. V. ROGOVCHENKO, On the asymptotic behavior of solutions for a class
of second order nonlinear differential equations, Collect. Math. 49 (1998), 113-120.

[28] Y. V. ROGOVCHENKO AND G. VILLARI, Asymptotic behaviour of solu-
tions for second order nonlinear autonomous differential equations, NoDEA Non-
linear Differential Equations Appl. 4 (1997), 271-282.



LARGE TIME ASYMPTOTIC TO POLYNOMIALS SOLUTIONS 41

[29] J. SCHAUDER, Der Fixpuktsatz in Funktionalrdumen, Studia Math. 2
(1930), 171-180.

[30] V. A. STAIKOS, Differential Equations with Deviating Arguments - Oscil-
lation Theory, Unpublished manuscripts.

[31] J. TONG, The asymptotic behavior of a class of nonlinear differential equa-
tions of second order, Proc. Amer. Math. Soc. 84 (1982), 235-236.

[32] W. F. TRENCH, On the asymptotic behavior of solutions of second order
linear differential equations, Proc. Amer. Math. Soc. 14 (1963), 12-14.

[33] Z. YIN, Monotone positive solutions of second-order nonlinear differential
equations, Nonlinear Anal. 54 (2003), 391-403.

[34] Z. ZHAO, Positive solutions of nonlinear second order ordinary differential
equations, Proc. Amer. Math. Soc. 121 (1994), 465-469.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOANNINA, P. O. Box 1186, 451 10 JOANNINA,
GREECE
E-mail address: cphilos@cc.uoi.gr ; ipurnara@cc.uoi.gr ; ptsamato€cc.uoi.gr






The Use of Inverse Deformation
Mapping in Mesh Optimization

Vassilios K. Kalpakides' and Konstantinos G. Balassas

Department of Mathematics, University of Ioannina,
Ioanning, GR-45110, Greece

Abstract

This paper aims at the exploitation of the material forces to find an optimum
mesh in the finite element method. The classical variational formulation pro-
vides the linear momentum equation in Lagrangian description. A variational
setting for the derivation of the canonical momentum equation in Eulerian de-
scription is presented. The latter is based on an extremum principle for the
total potential energy functional defined in terms of the inverse deformation
function. This constitutes a theoretical framework which allows the formula-
tion of the finite element method for the canonical momentum equation as well
as the computation of the material forces arising from the discretization. Thus,
apart from the finite element solution for the standard boundary value problem
of elastostatics, a second one for the canonical momentum equation can be for-
mulated and solved numerically. The former provides an optimum deformation
by minimizing the standard total potential energy, namely solving the physical
forces equilibrium equation. The latter provides an optimum discretization by
minimizing the total potential energy in terms of the inverse deformation func-
tion, that is solving the material force equilibrium equation. The theoretical
considerations are supported by providing a computational example.

Mathematics Subject Classifications (2000): 74505, 7/B99, 93B40, 65N50
Keywords: Material force, Inverse deformation function, Optimum mesh.

1 Introduction

In elasticity the motion of the body is governed by the linear momentum equation
which expresses either the balance of momentum in elastodynamics or the equilib-
rium of the forces acting on the body in elastostatics. The contributors to the linear
momentum equation are the classical forces (either body or contact). The material
forces [7, 8, 5] are contributors to another equation, the so called material or canon-
ical momentum equation. In statics, this equation governs the equilibrium of the
material forces. Unlike the problems with defects where the notion of material force
takes a physical interpretation, in the framework of pure elasticity the canonical mo-
mentum equation, being a simple identity for the solution of the linear momentum
equation, does not bring any new information to the problem of motion or equilib-
rium. Nevertheless, this is true only when the accurate solution is concerned. In
computations, where approximate solutions are necessarily considered, the material
forces make sense. They are closely related with the numerical error [3, 9]- More
specifically, a function, being an approximate solution of the momentum equation,

1Cc:rr&u:ponc].i.ng author. E-mail address: vkalpak@cc.uoi.gr
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does not necessarily fulfil the canonical momentum equation. The departure of the
latter from zero — that is a non vanishing material force — actually measures the
numerical error, for the specific approximate solution, inserted due to the specific
choice of discretization. One can try to minimize these material forces by displacing
appropriately the nodes points of the mesh [1, 11, 12, 13, 18].

Theoretically, the material forces, even those arising from the discretization, are
governed by the material momentum equation. Hence, the right way to reduce
them is to solve the canonical momentum equation. In a way, this can be done by
the Arbitrary Lagrangian Eulerian (ALE) formulation of the finite element method
[2]. For more details about the connection of ALE formulation with the concept of
material forces see in [6, 19]. This approach is based on an additional configuration,
the so called mesh configuration, on which both the spatial and material variables
are interpolated. Thus, one obtains an optimum solution over an optimum mesh as
well.

Unlike the ALE formulation, where essentially the momentum and canonical
momentum equations are solved simultaneously, we propose a scheme where these
equations are solved successively. Thus, no need for a new configuration exists. To
this end, we use the momentum equation in Lagrangian description and the canoni-
cal momentum equation in Eulerian description. Thus, the FE solution of the linear
momentum equation provides automatically the discretization for the solution of
canonical momentum equation and vice versa. This can be repeated so that an
iteration computational scheme can be established. It is remarked that even if the
momentum equation is a linear one, the corresponding canonical momentum equa-
tion is non-linear making the problem of mesh optimization more complicated in
comparison with the initial problem of finding the optimum approximate deforma-
tion for a given mesh. From the theoretical point of view, the scheme is supported
by a variational principle of the total potential energy functional expressed in terms
of the inverse deformation function. This principle results in the canonical momen-
tum equation as a necessary condition for an extremum of the energy functional. It
also provides the, needed for the FE implementation, weak form of the canonical
momentum equation.

Although, in this paper we confine ourselves to elastostatics, we shall use the
terms linear momentum and canonical momentum equations instead of the equilib-
rium of physical forces and equilibrium of material forces equations, respectively.
Two distinct symbols Vi and V are used to denote the gradient with respect to
material X and spatial x variables, respectively. In the same spirit the denota-
tions Grad and grad as well as Div and div will be used. Also, the reader must
pay attention to the difference between the total differential operator d/dX and the
simple partial differential operator 8/0X. The same difference exists between the
differential operators d/dx and 8/0x.

In Section 2, the direct and inverse problem of elastostatics as well as the strong
and weak forms of the corresponding equations are presented. In Section 3, the
role of material forces in FEM is examined and the justification of the proposed
computational scheme is exposed. The FE implementation is presented in Section
4 and some numerical results are derived in Section 5.
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2 The formulation in terms of the inverse deformation
function

2.1 Direct deformation function. Preliminaries

We recall first the standard notions of kinematics denoting with By the reference
configuration and B the deformed configuration in equilibrium. Also, denoting with
f the deformation mapping, we write

f:Bp—>B, x=f(X), Bg,BCE?3 (2.1)

thus, f maps the material particle X4 from the referential domain Bp to its spatial
position z; = f;(X4) in the spatial domain B. As usual, we require f to be one-
to-one and sufficiently smooth (typically C? for classical elasticity). Its gradient,
Vef is denoted by F (F;4 = 0f;/0X4) and its corresponding Jacobian, det(F) by
J. Certainly under the above requirements, J # 0, for all X € Bp.

Let us assume that the body forces per unit volume, b(x) (b = b;) are conser-
vative, that is independent of the deformation path. Denoting by V' (x) the corre-
sponding potential energy density, one can write

oV

b= i —gradV. (2.2)

So, the total potential energy density becomes
U=UX,f,F)=W(X,F)+ V(f), (2.3)

where W is the stored energy density per unit referential volume. From now on, we
restrict ourselves to the case of Dirichlet boundary conditions, let

f(X) = h(X), for all X € 8B,

where h(X), X € 9Bp, is a given function. The total potential energy of the whole
body for any admissible deformation f is given by the functional

I[f] = fB U(X,f,F)dX = fB [W(X,F)+ V(£)]dX, €V, (2.4)

where V is the set of admissible functions for I, that is, all sufficiently smooth (for
instance C?) functions defined on Bg, which moreover fulfil the boundary conditions
of the problem.

The necessary condition for an extremum in V for the total potential energy (2.4)
provides the Euler-Lagrange equations

SX[f; 58] = 0, V 6f € Vg =0 & (aU

Pf dx ﬁ)ﬂ’ VX €EBg,

where Vg is the set of admissible variations, that is all C* functions defined on Bp
which, moreover, fulfil homogeneous conditions along the boundary dBp.
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Accounting now for the constitutive relations of hyperelasticity (TT = W/ OF)
and eq. (2.2), we can write the Euler-Lagrange equations in the form

DivIT +b=0, VX €Bpg, (2.5)

where T is the first Piola-Kirchhoff stress tensor. Eq. (2.5) is the strong form of the
momentum equation in the referential description. For completeness, we give the
corresponding one in the spatial description

diveT + J"'b =0, Vx¢€ B, (2.6)

where o is the Cauchy stress tensor related to the Piola-Kirchhoff stress tensor as
follows
o=J'FPT and T=JFlo. (2.7)

Remark 2.1 In the subsequent sections it will be crucial to distinguish the domain
over which any function (consequently any equation as well) is defined. That’s why
the domain, over which the equations (2.5) and (2.6) hold, is specified. Moreover, the
fact that some relationships contain functions defined over different domains, may
cause confusion . If such is the case, one should account for the proper composition
through the function f which relates the spatial and material variables. For instance,
eq. (2.7b) should be read as

T(X) = J(X)FH{(X))o (£(X)).

Let us look now for a solution among less smooth functions (let f be C?), that is
to enlarge the set of admissible functions denoted now by V. A necessary condition
in order the functional I to possess an extremum in V is given by the variational
principle

OI[f;6f]=0, Véf €V = (?-E:5F+a—v-5f)dX:0,V5f€V0,
5, \ OF at
or
/ (TT:VR5f—b-§f) dX =10, V éf € V. (2.8)
Br

The above equation is the weak form of momentum equation (2.5) or the virtual
work principle for hyperelastostatics. The first term under the integral represents
the internal virtual work while the second one represents the external virtual work,
namely the virtual work of the external forces (here the body forces).

2.2 Inverse deformation function. A variational principle for the
canonical momentum equation

Here, we are interested in the inverse deformation function, g = f1, i.e.,
g:B—Br, X=g(x). (2.9)

The gradient of g is denoted by G = Vg (Gar = 0ga/0z;) and j denotes the
corresponding Jacobian determinant det(G).
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We can express the total potential energy of the body in terms of the inverse
function of f [7, 10]

I[g] = j; U(x,g,G)dz = fB [W(g,G)+V(x,G)]dz, g € U, (2.10)

where

W(g,G)=j(®W(g,G™), V(x,G)=3(G)V(x), (211)
and U is the set of admissible functions of I, that is, all C? functions on B that fulfil
the boundary conditions

g(x) = h™!(x), for all x € B. (2.12)

Using now the relations given by egs. (2.4), (2.10) and (2.11), one can easily confirm
that

I[f] = I[g], for all (f,g) € Vx U and g =f~ . (2.13)
Remark 2.2 It is noted that both the energy functionals I and I express the same
physical quantity, that is the total potential energy. With the definition (2.10), one
essentially transforms the domain of integration (Bg into B) as well as the domain
of the energy functional (V into Z/). For a more detailed discussion about the ma-
nipulations which lead to the definition of I, we cite the Refs. [10, 14].

An extremum principle for the functional I in the general setting of thermo-
elastodynamics has been been given in [10]. There, it has been proved that a nec-
essary condition for an extremum of the total energy functional, defined in terms
of the inverse motion mapping, provides the canonical momentum equation for the
motion. For the needs of the present paper it is enough to invoke the special case
of equilibrium which can be stated as:

For an hyperelastic body loaded by conservative body forces a stationary point
of the functional (2.10) satisfies the strong form of the canonical momentum
equation for the equilibrium.

An extremum g € I will fulfil the variational equation
81[g; 6g] =0, ¥ dg € Us,

where Uy is the corresponding set of variations. The above equation leads to the
Euler-Lagrange equations corresponding to the functional I.
oU d (U
—-—|=1]=0,V B. 2.14
dg  dx (3G) h ¥XE (&14)

We introduce the following definitions

_ow

ol — inh __OW

e =% (2.15)
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The last of eqs (2.15) is the inhomogeneity material force. Notice that W /dg =
OW/0X. Recalling eq. (2.11b), we directly obtain

ad [fu 6_1 T T,
— V= V=V, 2.16
G ~ 3G ¥ 2:18)
Accounting for the identity [7]
div(§FT) = 0, (2.17)

we obtain

d [V v - T
—— 1= = = —jF"b. 2.18
g (8G) div(jF'V) = jF' gradV iF'b (2.18)
With the aid of egs. (2.15), (2.16) and (2.18), the Euler-Lagrange equations take

the form )
divCT — j¥Tb + jB™ =0, V x ¢ B.

The above equation can be equivalently written in the following form
divCT + j(B+B™*) =0, Vx€B, (2.19)

where
B = GradV = gradV F = —FTb. (2.20)

Eq. (2.19) is the canonical momentum equation in spatial description. From the
continuum mechanics point of view, eq. (2.19) interprets the equilibrium of the
material forces like eq. (2.5), in the direct formalism, interprets the equilibrium of
the physical forces.

To establish a relationship of the tensor quantity C with known quantities, we
use the following identity [10]

a_W 3W kb -
aG OF

Thus, we can proceed to the following simple calculation with the aid of egs. (2.11)
row

JOF
) JFT = (Wig - FTT7T) jFT

BW _ 8_7 6W_ s T .
3G = Wag tigg =WiF - JF

oW
== W1 T
- ( = F 5F
= juTFT, (2.21)

FT

where
X =WIr—-TF (2.22)

is the well-known Eshelby stress tensor (see [4] for the linear case). Actually, eq.
(2.21) reads
X=;!GC and C=j;G'x® (2.23)
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thus, the Eshelby stress tensor X is the Piola transformation (pull-back) of the two—
point tensor C. Recalling now eq. (2.17), one can easily calculate the divergence of
(2.23b)

divCT = jDivET, (2.24)
thus, the pull-back of eq. (2.19) is given by the equation
DivET + B+ B™ =0, X € By. (2.25)

The latter is obviously an alternative form of the canonical momentum equation.
In literature, it is customarily referred to as the pseudomomentum equation [7, 8.
Both equations (2.19) and (2.25) express the equilibrium of material forces. The
single difference between the two equations is that the former is set in the spatial
description while the latter in the referential description.

Remark 2.3 Notice the analogy between the equations (2.5), (2.6) and (2.7) on
the one hand and equations (2.19), (2.25) and (2.23) on the other. An elegant du-
alism between the two formalisms for the direct and inverse deformation function is
so revealed. For a more thorough discussion about this we mention the recent works
of Steinmann [15, 16, 17]. We would like to draw the attention on the equation of
canonical momentum in the spatial description, i.e., eq. (2.19) instead of the cor-
responding one in the referential description (eq. (2.25)) that is commonly used in
literature. This preference will be justified in the next section, where we will develop
our computational scheme.

Returning now to the functional of total potential energy in terms of the inverse
deformation function (i.e. eq. (2.10)), one can additionally obtain the weak form of
the material momentum equation by relaxing the smoothness assumptions for the
functions g belonging to the set Z/. Let I/ be the set of C! functions which satisfy
the boundary conditions (2.12). Consider a g € I which is a stationary point of I,
then we take

- oW oV oW
0[g; ég] = —+t==1: —-—- =
(g;08] =0, Yég e Uy < /]3[(6G+8G) 0G + 9g Jng:c 0, Vég € Uy
(2.26)
or taking into account egs. (2.15) and (2.16) one can write
f [(CT +G7TV) : Vog - jB" 6g| dz=10, V b5g €. (2.27)
B

Equation (2.27) is the weak form of the canonical momentum equation. Its corre-
sponding strong form is given by eq. (2.19). One can view eq. (2.27) as the principle
of virtual work of the material forces.

Remark 2.4 It is interesting to note that the material body forces B originated by
the conservative physical body forces b, do not contribute to the "external” virtual
work through a term of the form jB - ég as one may expect. The "external” virtual
work is exclusively due to the inhomogeneity material forces. As it appears in eq.
(2.27), the material body forces contribute through the term G=7V : V{g, thus it
seems they are contributors to the ”internal” virtual work.
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3 The material forces and the FE solution

It is worth noting that the momentum equation (2.5) as well as the material mo-
mentum equation (2.19) solve actually the same problem i.e., the equilibrium of the
elastic body. The former provides the deformation function while the latter provides
- its inverse. If the solution f of the momentum equation is given, then its inverse,
i.e. 71, fulfils the material momentum equation identically and vice-versa. Thus,
the material momentum equation is a simple identity for the solution of the direct
problem. This is not true for any other function of the set of admissible deforma-
tions. In the sequel, we restrict ourselves to the case where W = W (F) thus, the
inhomogeneity material forces vanish. Given any function f € ¥, which is not a
solution of eq. (2.5), then eq. (2.19) does not vanish for its inverse g = f~!, thus

divC™(g) + j(g)B(g) = B(g) # 0. (3.1)

The vector quantity BC is a material force which indicates the deviation of f from
the accurate solution. The smaller is the magnitude of B°(g), the closer is f to
the solution of momentum equation. More rigorously, any g € U (or, equivalently
any f € V) defines a vector field of material forces over the deformed configuration,
ie., B°(g(x)) = B%(x), x € B. The presence of a non—vanishing field B*(x) is an
evidence that the body, for the specific g, is not in equilibrium. Any attempt to
reduce the material force B¢ brings us closer to the solution. Notice that fixing
the deformation x and letting the material points X free to variate, the equation
B¢(x) = 0, x € B reduces to the canonical momentum equation (2.19). Introducing
a more "physical” view, one might interpret B¢ as the material forces field that try
to "move” the material points to meet the true undeformed configuration Bp for a
given deformed configuration B.

Remark 3.1 We remind that the weak form of the momentum (eq. (2.8)) and
the canonical momentum equation (eq. (2.27)) have been formulated in the classical
way. Notice, that the sets V, Vg, If and I, contain generally C! functions. Whereas
this formulation is appropriate for a virtual work principle, it is not adequate for
a finite element application, because a FE solution is not in general a C! function.
The natural setting of a variational principle is that of Sobolev spaces. In this per-
spective, one should replace V and V, with H'(Bg) and H}(BR), respectively as
well as U and Uy with H'(B) and H}(B).

Consider now an arbitrary discretization of Bg with N nodes X3 X2, .. . i)
and the corresponding finite element solution of the momentum equation (d1rect
problem)

N
=Y " xINI(X), (3.2)
J=1
where N7/(X) are the shape functions. The corresponding total potential energy is

given by
I = I (x, %%, ..., xY) (3.3)
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and the determination of the unknown parameters of the FE solution results from
the solution of the algebraic system

0T, (x1)
Bl
At this point, it is worth noting that the expression (3.3) for the total energy depends
tacitly on the choice of the nodes in the initial discretization of Bp, thus, we can
symbolically write
Biloch o e ™) = BOEL XD oo X w2 22, %), (3.5)
fixed

=0, I,J=1,...,N. (3.4)

Furthermore, let us denote by {x}, 7 =1,..., N}, the solution of the system (3.4),
then the following inequality holds

In(x§) = B(XJ;x{) < E(X;x"), vx! € B. (3-6)

According to eq. (3.1), the so obtained approximate deformation does not fulfil
the canonical momentum equation, i.e. Bc(f"_l) # 0. A little bit later, in this sec-
tion we will show how one can compute the corresponding discrete material forces
BY,I=1,2...,N, which will be indicators of the induced numerical error. More
precisely, the magnitude and the direction of each discrete material force is influ-
enced by the choice of the initial mesh X}, KE v Xév as well as by the induced
deformation x§, %3, ..., % . Thus any rearrangement of the initial mesh {XJ} causes
different material forces, which become smaller as far as the corresponding mesh pro-
vides a better approximate solution f*. Motivating from this remark some methods
of minimizing the material forces B, I = 1,..., N by displacing appropriately the
nodes of the mesh have been proposed [1, 11, 12, 13, 18].

In this work, we propose an alternative way to obtain the appropriate displace-
ment of the nodes. First, we remark that, by analogy with the continuous case,
the discrete material forces try to 'move” the initial nodes {XJ, J = 1,...,N }
to meet the appropriate mesh that fits better to the discrete deformed configuration
{x{, I=1,...,N}. This is equivalent to solving the canonical momentum equation
(inverse problem) for the deformed configuration {x{} be given or, in mathematical
terms, to determine the FE solution

N
g" =Y X'M'(x), (3.7)
J=1
where M7 (x) are now the shape functions arisen from the discretization F50 s Xy v}

of B. To obtain the unknown parameters of g”, which, by the way, will not be the
inverse of f?, one should minimize

Ig" =1(X, X%,..., XN) = B(X', X2, XNd ., xd) (3.8)
—
fixed
or, equivalently B
oL, (X1 _ _
W—O’ I,J—l,..-’N- (3-9)



Eqs. (3.9) constitute the finite dimensional version (discrete equations) of the vari-
ational equation (2.27). Computing the left hand side of the above equations for
the specific values of the initial discretization {X{}, we obtain the discrete material
forces BS at the nodes xJ of B.

N

axJ
Notice that the above equation is the discrete version of eq. (3.1). Also, the ma-
terial forces so computed are defined on the deformed configuration unlike what is
commonly done in literature, where the discrete material forces are computed on the
reference configuration. Minimizing the material forces B¢ is equivalent to solving
the system (3.9). The latter is always a non-linear algebraic system because the
stored energy density W, from which it is arising, is not a quadratic function even
if the W is. Let {X{, I = 1,..., N} be the solution of the system (3.9), then we
can write

X =B, J=1,...,N.

L(X{) = BX{;x{) < B(X';x{), VX’ €Bg (3-10)
Combining the inequalities. (3.6) and (3.10), we obtain
E(X{;%)) < B(X3;x4), (3-11)

thus, the deformation {(X{;x}), I = 1,...,N} represents a better approxima-
tion to the accurate solution in comparison with the deformation {(X{;xJ), I =
L,...,N}. Taking the view of Braun [3], we can claim that the discetization of Bg,
xXf{1r=1,...,N } is more appropriate than the initial, arbitrarily chosen disciti-
zation {X{, I =1,..., N}. However, we must underline the fact that {XI} make
up the optimum discretization under the constraint that the points {x}} are fixed.
To obtain a better approximation one has to compute the FE solution of the mo-
mentum equation for the new discretiztion {X{}. The above considerations make
sure that its solution {x{} will provide lower energy, namely it will be an even bet-
ter approximation. This completes a series of computations which can be repeated
establishing, in this way, an iterative computational scheme. Its k step gives the
deformation {(X{;xf), I = 1,...,N} which has lower energy in comparison with
the k — 1 step. Thus, the relaxation of energy at every step ensures the convergence
of the scheme.

4 Implementation of the FE method

We start with an arbitrary discretization in the reference configuration, Bp according
to the standard FEM. Let {XJ, I =1,2,..., N} be the nodes in Bp which set up
the N elements Q, i.e.,

Nel
Br = | Q. (4.1)

e=1
Denoting with N/(x) the shape functions for the element e, one can write the finite
element solution for this element as

F(X) = 3 xINI(X), (4.2
I=1
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where x! are the unknown nodal parameters and m is the number of nodes per
element. The same shape functions can be used also to interpolate the variations 6f

5F(X) = i sxI NI(X). (4.3)
I=1

"The corresponding gradients will be given by

m m
Vef® = ZXI@)VRNJ, VRéf® = Z5XI®VRNEI. (4.4)
I=1 I=1
Thus, following the standard procedure one obtains the momentum equation in
discrete form

Mgl

ng(xl,xz,...,xN)=e}=\1r£,f:0, I=1,.. N, (4.5)

where 7 is the number of neighbouring elements to the node I , IV is the total

Nl

number of nodes, Al denotes the assembly of all element contributions at the node
I and =

Pl = a (VeNI(X)-T — N(X) b)dx (4.6)
is the residual at the node I of the element e. We remind that the above algebraic
system corresponds to a Dirichlet problem, thus only the parameters x! at the
interior nodes should be determined. The values at the boundary nodes are given
by the essential boundary conditions. If the system (4.5) is a linear one, a standard
procedure [2], which accounts for the insertion of the boundary values into the
system, can be followed. In the case it is a non-linear one, one should replace
the given values at the boundary nodes and, simultaneously, introduce unknown
Lagrangian multipliers, which actually account for the reaction of the boundary
constraints.

Having obtained the solution of the system (4.5), we can proceed to the second
stage, that is the solution of the canonical momentum equation. Say x3,x2, ..., xY
be the solution of (4.5). Taking these points as the nodes of a discretiaztion in the
deformed configuration B, we write

NEI

B = we. (4.7)

e=1

Let us denote now with M/ the shape functions for the element e, then the finite
element solution and the corresponding variation can be written

g°(x) =D X'M/(x), dg°(x)=> oX'N/(x). (48)
I=1 I=1
Consequently, their gradients take the form
vee=Y XT@VN!, vég = > sx!@ VNI (4.9)
I=1 I=1
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The residual at the node I of the element e will be

rly={ VMI(x)-(C+ G 'V)dz, (4.10)

We

which provides the following non-linear system of equations for the global nodes

n‘cl
Rg(XI,X{...,XN):eélrgg:o, I=1,...,N. (4.11)

The above equation represents the equilibrium of the material forces at the global
node x!. Actually, it is the discrete version of eq. (2.19). Its nonlinearity stems
from the fact that the Eshelby-like tensor C is related to Vg through a non-linear
relation, i.e. eq. (2.15). One can solve the system (4.11) by the use of the Newton—
Raphson method. The boundary conditions are of Dirichlet type as they were in
the previous problem. Lagrangian multipliers are now necessarily used and this
time they interpret the ”material reaction” of the boundary constraints, i.e., real
material forces at the boundary nodes. It is useful to take the values X3, X2, ..., X
as initial guess, because by this way we obtain to compute the discrete material forces
corresponding to the approximate deformation x = f*(X) at the interior nodes as
well as the real material forces at the boundary nodes. Indeed, the material forces

BUX X2 XY, E=1,... .. (4.12)

are nothing but the discrete form of eq. (3.1). The material forces computed at
the boundary nodes are expected to be much larger in comparison with the corre-
sponding ones at the interior nodes because, apart from the numerical error, the
former represent real material forces that cannot be made to vanish. The solution
X1, X2,..., XY of the system (4.11) will provide vanishing material forces at the
interior nodes for the specific positions x3,x2, ..., x{’ in the deformed configuration.
Thus, it will be a better discretization of Bg. This allows one to solve the equilib-
rium equation again, with the new discretization, to obtain a better approximate
solution.

5 A computational example

Consider a homogeneous, one—dimensional bar clamped on both sides and loaded by
a constant load by as it is shown in the Figure 1. The density of the total potential
energy is given by

Uz,z') =W(z') + V(z) = W{(z") — boz, (5.1)

where z = z(X), X € [0, L] is the unknown deformation function. Also, we assume
that the stored energy density is a quadratic function of the deformation gradient:

1
W(z') = §E'.7;'2, (5.2)
where F is the elasticity constant.

54



The total potential energy of the body can be computed by integration of the
density U over the entire bar length e.g.

L
Iz = ]; U(z,z")dX. (5.3)

The equilibrium equation corresponding to the above energy functional, for a
bar of unit length, is given by
Ez" 4+ by =0, (5.4)

with boundary conditions
z(0)=0 and z(1)=1. (5.5)

One can easily find the exact solution for the boundary value problem (5.4)—(5.5)

which is of the form
bo

2F
We give now the total potential energy functional in terms of the inverse deformation
function X = X (z)

(X)=———=X2+(1+ ;—;)X. (5.6)

L
i[x] = fo 0 (z, X")dz, (5.7)
where
Uz, X') = W(X') + V(z, X", (5.8)
and
W(X') = g% V(z,X") = —bpX'z. (5.9)

Notice that the external potential energy density depends on both the spatial po-
sition z and the gradient of the material position X’. The corresponding equation
for the equilibrium of the material forces (material momentum equation) takes the

form
Xﬂ'

Xr3

E+by=0, (5.10)
with the boundary conditions
X(0)=0 and X{1)=1. (5.11)

Next, we present some numerical results concerning the above problem. To this
end, the analysis of the preceding section has been applied by the use of linear shape
functions. We examine three cases with regard to the number and the position of
the node points.

Case 1: A mesh of three nodes.

We start with an example in which the unique free node X is set in a position
far from the optimum. As illustrated in Figure lal, the single node moves from
the initial position, i.e., X2 = 0.9 to the optimum one, at the middle of the bar.
The proposed scheme needs 8 iterations to obtain the value 0.5000. Also, the exact
solution for the corresponding displacement field is drawn with red solid line in Fig.
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1bl. In the same figure, the FE solution corresponding to the initial mesh (green
dash line) and the FE solution for the optimum mesh (blue solid line) are drawn for
comparison. The behavior of the total potential energy versus the number of itera-
tions is depicted in Figure 1cl. We remind that the optimum mesh is one whereby
the total potential energy of the problem becomes minimum. It is clearly shown in
Figure 1cl, that the system obtains lower energy at each iteration as well as that
the lowest possible value of the total potential energy corresponds to the optimum
mesh (X; = 0.5000).

Case 2: A mesh of four nodes.

In this case we choose an initial mesh which consists of 4 nodes, that is two fixed
boundary nodes and two interior nodes free to move. The optimum mesh corre-
sponds to a uniform distribution of nodes due to the symmetry of the solution (see
the exact solution in Fig. 1b2). The choice of the initial mesh is arbitrary and
corresponds to the values X3 = 0,2 and X3 = 0,7. This mesh is depicted in Fig.
1la2, where the non-vanishing material forces at the interior nodes are sketched by
green arrows. The values of the material forces at the boundary nodes - not drawn
in the figure - are 3 x 10% times bigger than those ones at the interior nodes. More
precisely, we take the following values for the discrete material forces

B{~3.6x10°, B§~-16, B§~12 BS~—3.7x10%.

After 25 iterations, we obtain the values X, = 0,33333 and X3 = 0,66666. There,
the material forces at the boundary nodes retain the same order of magnitude
(> £3.7 x 10%), while the material forces at the interior nodes essentially vanish
(=~ 107°). Hence, the optimum position of the nodes has been obtained. This is ver-
ified also by the behavior of the total potential energy which moves asymptotically
to its minimum as shown in Fig. 1c2. It is noted that the value of the total potential
energy for the exact solution is Ioye; = —10.10. The FE solution for displacement
field for the initial as well as for the optimum mesh are shown with green dash and
blue solid lines, respectively in Fig. 1b2. For the sake of comparison, the exact
solution of the displacement field is also drawn there with red solid line.

Case 3: A rough initial mesh

Finally, to verify the ability of the proposed scheme to recover the optimum mesh
under irregular conditions, we present an example with a rough initial mesh which
consists of 4 nodes. The two free to move nodes are set almost one over the other
at the positions X, = 0.1, X3 = 0.11, respectively (see Fig. 2a). As in the Case
2, it took 25 iterations to catch the optimum uniform mesh Xs = 0,33333 and
X3 = 0,66666, where the material forces practically vanish (Fig. 2b). The FE solu-
tion for displacement field corresponding to the rough mesh is illustrated in Fig. 3a
with green dash line. Notice that due to the closeness of the two internal nodes, it
seems that it is a three node FE solution. The behavior of the total potential energy
versus the number of iterations is depicted in Fig. 3b as well.
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6 Conclusions

We have presented a theoretical framework for the formulation of the canonical
momentum equation in weak and strong form in order to apply it to the finite
element method. To this end, we have used an extremum principle for the total
potential energy which was expressed in terms of the inverse deformation function.
Besides the standard formulation of the FEM for the Dirichlet boundary problem
of elastostasics, we have derived the FE formulation for the Dirichlet problem of
the canonical momentum equation. The two problems, being equivalent in the
continuous case, supplement each other in the finite dimensional case. The FE
solution of the former provides an optimum deformation while the corresponding
FE solution of the latter provides an optimum distribution for the node points of
the mesh. We have shown that the two problems can be linked in the sense that the
numerical solution of one provides a good discretization for the other. By this way,
we have established an iterative scheme whereby at every step it is made sure that
the energy of the system decreases.

A computational example from one dimensional elastostatics was used to confirm
our theoretical predictions. All the numerical examples, that we have tried, show the
reduction of the material forces as well as that of the total potential energy. How-
ever, we feel that more computational experiments are needed to test the scheme in
the two dimensional case. Also, the formulation of a corresponding scheme for the
Neumann boundary problem is among our projects for the near future.

Acknowledgement — The authors are grateful to Prof. G.A. Maugin for his remarks
on an earlier version of this paper.
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First Order Delay Difference Equations

I.P. STAVROULAKIS

Department of Mathematics
University of Ioannina
451 10 Ioannina, Greece

E-mail: ipstav@cc.uoi.gr

Abstract. Oscillation criteria for all solutions of the first order delay difference
equation of the form

xn-}-l - xﬂ, +pnxn—k - 0, n= 0, 1,2, “eey

where {p,} is a sequence of nonnegative real numbers and k is a positive integer
are established especially in the case that the well-known oscillation conditions

n n—1 k
. Lo 1
h”I‘n_’SC’lipimZ_kpi >1 and hﬂggfg iznzzkpi > _“_(k—f- 1)1

are not satisfied.

Key words: Oscillation, nonoscillation, delay difference equation.
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1. INTRODUCTION

In the last few decades the oscillation theory of delay differential equa-
tions has been extensively developed. The oscillation theory of discrete
analogues of delay differential equations has also attracted growing atten-
tion in the recent few years. The reader is referred to [1-16, 18-32] and the
references cited therein. In particular, the problem of establishing sufficient
conditions for the oscillation of all solutions of the delay difference equation

Tnt+l — Tn T Prn—k = 0: n= 0: 1: 21 S (11)

where {p,} is a sequence of nonnegative real numbers and k is a positive
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integer, has been the subject of many recent investigations. See, for example,
[2-9, 12-16, 18-27, 29-32] and the references cited therein. Strong interest in
Eq. (1.1) is motivated by the fact that it represents a discrete analogue of
the delay differential equation (see [17] and the references cited therein)

z'(t) +pt)z(t—7)=0, p(t)>0, 7>0. (1.2)

By a solution of (1.1) we mean a sequence {z,} which is defined for
n > —k and which satisfies (1.1) for n > 0. A solution {z,} of (1.1) is said
to be oscillatory if the terms z, of the solution are not eventually positive
or eventually negative. Otherwise the solution is called nonoscillatory.

For convenience, we will assume that inequalities about values of se-
quences are satisfied eventually for all large n.

In this paper, our main purpose is to derive new oscillation conditions for
all solutions to Eq. (1.1), especially in the case that the known oscillation
conditions (see below)

) n L 1 n—1 kk
llflﬁolip i,%zk pi > 1 and hnn_1' 1£f % ,;:_nz_k pi > W

are not satisfied.

2. OSCILLATION CRITERIA FOR EQ. (1.1)

In 1981, Domshlak [3] was the first who studied this problem in the case
where k = 1. Then, in 1989 Erbe and Zhang [9] established the following
oscillation criteria for Eq. (1.1).

Theorem 2.1.([9]) Assume that

g = lin:rp_)ioréfpn >0 and limsupp, >1-3 (Cy)

Then all solutions of Eq. (1.1) oscillate.
Theorem 2.2.([9]) Assume that

Lk
CESTEE

Then all solutions of Eq. (1.1) oscillate.

(Cs)

i igion >
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Theorem 2.3.([9]) Assume that

A :=limsup Z pi>1 (Cs)

n—oo .
i=n—*k

Then all solutions of (1.1) oscillate.

In the same year 1989 Ladas, Philos and Sficas [13] proved the following
theorem.

Theorem 2.4.([13]) Assume that

n—1 k
k
it Z_Zn P G (Ca)

Then all solutions of Eq. (1.1) oscillate.

Therefore they improved the condition (C2) by replacing the p, of (Cs)
by the arithmetic mean of the terms p,—g, ..., pn—1 in (Cy).

Concerning the constant W— in (C2) and (Cy) it should be empasized

that, as it is shown in [9)], if
Lk
SUP Pn < m (N1)

then Eq. (1.1) has a nonoscillatory solution.
In 1990, Ladas [12] conjectured that Eq. (1.1) has a nonoscillatory so-

lution if
kk
k Z PiS g DFr

1=n—*k
holds eventually. However this conjecture is not true and a counterexample
was given in 1994 by Yu, Zhang and Wang [30].

It is interesting to establish sufficient conditions for the oscillation of all
solutions of (1.1) when (C3) and (Cjy) are not satisfied. (For Eq. (1.2), this
question has been investigated by many authors, see, for example, [17] and
the references cited therein).

In 1993, Yu, Zhang and Qian [29] and Lalli and Zhang [14], trying to im-
prove (C3), established the following (false) sufficient oscillation conditions
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for Eq. (1.1)

k k+1 052
0 < @ :=liminf Z pz_(k+1) and A>1—? (F1)

n—eo
i=n—k

and

n a4 43 a3 e
Zpi2d>0forlargenandfl>1—§ 1——4—+ 1—3 (F2)

i=n—~k

respectively.

Unfortunately, the above conditions (F}) and (F5) are not correct. This
is due to the fact that they are based on the following (false) discrete version
of Koplatadze-Chanturia Lemma. (See [6] and [2]).

Lemma A (False). Assume that {z,} is an eventually positive solution of
Eq. (1.1) and that

> pi>M>0 for large n. (1.3)

i=n—=k

Then
2

Ty 2> Tmn_k for large n.

As one can see, the erroneous proof of Lemma A is based on the following
(false) statement. (See [6] and [2]).

Statement A (False). If (1.3) holds, then for any large N, there ezists a
positive integer n such thatn —k < N <n and

N n M
Lpeys Lmzy

It is obvious that all the oscillation results which have made use of the
above Lemma A or Statement A are not correct. For details on this problem
see the paper by Cheng and Zhang [2].

Here it should be pointed out that the following statement (see [13], [20])
is correct and it should not be confused with the Statement A.
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Statement 2.1. ([13], [20]) If

n—1
Z pi>M >0 for large n, (1.4)
i=n—*k
then for any large n, there exists a positive integer n* withn —k <n* <n
such that

L M
Z Pz o 2 ] Z Di > 7
i=n—k i=n*

In 1995, Stavroulakis [20], based on this correct Statement 2.1, proved
the following theorem.
Theorem 2.5.([20]) Assume that

k k+1
< [
0<0‘“(k+1)

o2
limsupp, >1— —. (Cs)

n—oo 4

and

Then all solutions of Eq. (1.1) oscillate.

In 1998, Domshlak [5], studied the oscillation of all solutions and the
existence of nonoscillatory solution of Eq. (1.1) with 7 -periodic positive
coeficients {pn}, Pr+r = pPn- It is very important that in the following cases
where {r =k}, {r=k+1},{r =2},{k=1,7r=3} and {k=1,r = 4} the
results obtained are stated in terms of necessary and sufficient conditions
and it is very easy to check them.

Following this historical (and chronological) review we also mention that
in the case where

k k
k Z P2 (& +k1)k+1 and nli_{lc}oﬁ Z pi = #)k-i—l’

i=n—*k i=n—k

the oscillation of (1.1) has been studied in 1994 by Domshlak [4] and in 1998
by Tang [21] (see also Tang and Yu [23]). In a case when p, is asymptoti-
cally close to one of the periodic critical states, unimprovable results about
oscillation preperties of the equation

Tptl — Tn + PpZn-1 =0

65



were obtained by Domshlak in 1999 7] and in 2000 [8].

In 1999, Domshlak [6] and in 2000 Cheng and Zhang [2] established the
following lemmas, respectively, which may be looked upon as (exact) discrete

versions of Koplatadze-Chanturia Lemma.

Lemma 2.1. ([6]) Assume that {z,} is an eventually positive solution of

Eq. (1.1) and that

n—1
Z pi>M >0 for large n.
i=n—k
Then
M2
Ty > —4—$n—k for large n.

(1.4)

(1.5)

Lemma 2.2. ([2]) Assume that {z,} is an eventually positive solution of

Eq. (1.1) and that

n—1
Z pi=>M >0 for large n.

i=n—k

Then
Ty Mkscn_k for large n.

Based on these lemmas we establish the following theorem.

Theorem 2.6. Assume that

k k+1
< | — 3
0<°’—(k+1>

Then either one of the conditions

n—1 (.1’2
limsu > 1—-—
msup. > b 1

i=n—*k

or
n—1

lim sup Z p;>1—aF

R =k

implies that all solutions of Eg. (1.1) oscillate.
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Proof. Assume, for the sake of contadiction, that {z,} is an eventually
positive solution of Eq. (1.1). Then eventually

Ay =Tt — Tn < —PrTn-k <0,
and so {z,} is an eventually nonincreasing sequence of positive numbers.

Summing up (1.1) from n — k to n — 1, we have

n—1

Tn—Tnk+ Y, Di%ig=0,

i=n—k

and, because {z,} is eventually nonincreasing, it follows that for all suffi-
ciently large n

i=n—k

n—1
Tn — Tn—k + ( > Pi) Zn—k <0,

or

n—1
Tn
xn—k(zpi‘i' —1)50-

i=n—k Tn—k
Now, using Lemma 2.1, for all sufficiently large n, we have
n—1 2
xn—k( Pz-i-?-——l)SO
: 4
i=n—*k

or, using Lemma 2.2, for all sufficiently large n, we have

n—1
Tnk| >, Pi+oF—1]<0
i=n—k

respectively, which, in view of (Cg) and (C7), lead to a contradiction. The
proof is complete.

Remark 2.1. From the above theorem it is now clear that
n—1 k k+1 n—1 a,2
O<a:= li,z!i,%gf_zkpiS (m) and limsup Z p¢>1—z

n—oo .
I=n— i=n—k

is the correct oscillation condition by which the (false) condition (F}) should
be replaced.
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Remark 2.2. Observe the following:

(i) When k= 1,2
2
" Wl
47

(since, from the above mentioned conditions, it makes sense to investigate

K \F+1 s L
the case when a < (——-) ) and therefore condition (Cs) implies (Cv).

E+1
(ii) When k = 3,
2
a® > % when o > é
while i
cx3<-(i—whena< %l

So in this case the conditions (Cs) and (C7) are independent.

(iii) When k > 4
of < &
4 ?
and therefore condition (C7) implies (Cs).
(iv) When k£ < 12 condition (Cs) or (C7) implies (Cs).
(v) When k£ > 12 condition (Cs) may hold but condition (C3) may not
hold.

We illustrate these by the following examples.

Example 2.1. Consider the equation
'I:TH']- — Tn +pﬂ.$ﬂ—3 = O: n= 07 1> 2: ]

where 1 i 64
. o M
n == T i) T el o 7 == 711 y ey
P2 10 Pon+1 10+95 sin 5 n=0,1.2

Here k = 3 and it is easy to see that

T = g _ gyt
o =liminf 3 pe=15< ()

and
n—1

3 64
limsup pi=—+—~>1—a3.
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Thus condition (C?7) is satisfied and therefore all solutions oscillate. Observe,
however, that condition (Cg) is not satisfied.
If, on the other hand, in the above equation

- —i+ﬂsinzﬂ n=20,1,2
ban = 100° Pont1 = 100 1000 2 = U L8 .y

then it is easy to see that

n—1 4
a = liminf z D= _2_‘_1_ < (§-)

s 2. Pi= g0 < \1
and ;
= 24 746 o2
I e i B
msup D Pi= 55+ 1000 7 LT 4

In this case condition (Cg) is satisfied and therefore all solutions oscillate.
Observe, however, that condition (C7) is not satisfied.
Example 2.2. Consider the equation

Tnt+l — Tn +PnZn-16 =0, n=0,1, 2a ey

where

o _2 _2 65 i,
P17n = P1Tn4+1 = -« = Pl7a+15 = 100’ Pitn+16 = 100 " 1000 =uU L4 ...

Here k£ = 16 and it is easy to see that

n—1 it
a = liminf Z p,;=£< (16)

Weiga 100 17
and 5
. o 32 655 o?
hrrisolépiznz—:wpi =100 + 1000 = 0975 >1— R

We see that condition (Cg) is satisfied and therefore all solutions oscillate.
Observe, however, that
34 655

n
A=lmsup > pi= 15+ 7505 =0995 <1

i=n—16
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that is, condition (C3) is not satisfied.

Acknowledgement. The author would like to express many thanks to

Professor Yuri Domshlak for useful discussions concerning this paper.
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ABSTRACT: This work aims at the study of the dynamic fracture of an elastic material
in the framework of the configurational mechanics. The analysis is based on the global
balances for the physical and configurational fields. Thus, the concept of the balance
law for an elastic fractured body, in Euclidean and material space, is treated in detail. In
the spirit of modern continuum mechanics, a rigorous localization process is proposed.
This procedure provides the equations in Euclidean and material space as well as the new
contributions for the configurational forces and moments at the crack tip. In addition, it
facilitates the derivation of the relationship between the energy release rate (or the rota-
tional release rate) and the configurational force (or the configurational moment). The
results are compared with the corresponding ones of fracture mechanics and some new
interpretations are discussed.

1 INTRODUCTION

The propagation of a crack of any curvature in a deformable body is a complex phe-
nomenon because apart from the dynamics of the elastic motion, the evolution of the
crack must be accounted for, too. The evolution of the crack takes place, not in the phys-
ical space, but within the material body, that is, the material space. Thus, we believe that
configurational mechanics (Maugin 1993, 1995; Gurtin 2000) should be the appropriate
framework in which this problem can be efficiently studied.

To this scope, we start with the global balance laws as it is used to do in any other
problem in continuum mechanics. More specifically, we consider an elastic body with a
propagating crack in its interior and postulate the balances for all relevant fields, included
the configurational ones, for any arbitrary part of the body (Agiasofitou and Kalpakides
2003). In the presence of the crack, this procedure becomes much more complicated be-
cause of two reasons. Firstly, the involved fields are not continuous across the crack, even
more, they may have a singularity at the crack tip and second, the underlying kinematics is
more complicated due to the presence of the separate crack kinematics. In particular, the
singularities at the crack tip make necessary to reformulate the transport and divergence
theorems, which are indispensable for any localization process.

In literature, such a view can be found in the work of (Steinmann 2000) who pre-
sented balance laws in both the physical and material space for elastostatics of a smooth
elastic body. Also, reports to equations, which can be considered as balance laws for a
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fractured body, appeared in (Maugin 1993, 1995; Dascalu and Maugin 1995; Gurtin and
Podio-Guidugli 1996; Gurtin 2000; Kienzler and Herrmann 2000) but, to the best of our
knowledge, up to now there is not a complete and consistent analysis in the spirit of mod-
ern continuum mechanics.

The global view adopted in this paper can shed light on the relationship between the
configurational fields at the crack tip and the energy release rates as well as the connection
between the first ones and the J and L integrals. For instance, starting from the pseudomo-
mentum and energy equations, one can establish a connection between the energy release
rate and the configurational force at the crack tip. This quantity is referred to by Maugin
as global material force and it is directly related to the J—integral (Maugin 1993; Dascalu
and Maugin 1995). One of our goal in this paper is to explore an analogous relation start-
ing from the material angular momentum and energy equations. In this case, it is expected
a connection between the configurational moment at the crack tip and the rotational en-
ergy release rate. Such a relation has been provided by (Maugin and Trimarco 1995) for
the case where the defect is a disclination line.

Furthermore, (Golebiewska Herrmann and Herrmann 1981) considered the case of a
stationary crack which rotates and they computed the rotational energy release rate. Also,
(Eischen and Herrmann 1987) tried to connect the conservation (and balance) laws with
the energy release rates and the J, L and M integrals. In these works, a straight stationary
crack is considered and the rotational energy release rate emerges by a virtual rotation of
the crack around its center. Although this is a very successful and meaningful manipula-
tion (in the sense that the associated conservation law is coming from the invariance of
the action functional under the group of rotations), it can not be related to a real situation
of a propagating crack.

Looking for a more physical interpretation, the propagation of a crack along a curve of
arbitrary curvature is considered in such a way that the linear and the angular velocity of
the crack tip to be inserted. The balance laws are postulated and from the localization pro-
cess the configurational fields at the crack tip naturally arise. Finally, these quantities are
correlated with the energy release rates and the J and L integrals of fracture mechanics.

Although the crack propagation in a deformable body is a dissipative phenomenon, in
this paper no mention is made to the second law of thermodynamics and to the subsequent
discussion about constitutive relations.

In Section 2, some preliminaries concerning the proper kinematics for a cracked elas-
tic body are presented. In Section 3, an abstract balance law is postulated, the conditions
under which it is meaningful are examined and its consequences are extracted rigorously.
The application of this procedure to the physical and configurational fields, related to the
problem under study, is made in Sections 4 and 5, respectively. Finally, in Section 6, the
obtained results are used to derive the relations between the energy release rates and the
configurational fields at the crack tip.

2 PRELIMINARIES

Let B, be the reference configuration containing a crack which is described by a smooth,
non-intersecting curve Cr with the one end point to lie on the boundary of the body and
the other one to be the crack tip, Z,. We consider that the crack evolves, not necessarily
in straight direction, following the “motion” of the crack tip within the body. Thus at the
time ¢, the crack is represented by a smooth curve C(t) belonging to a material configu-
ration B;, t € I C IR, where I denotes a time interval. The only difference between the
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reference configuration Br and the material configurations B; lies in the different curve
they contain. Certainly, it is required for ¢; > #2 to imply C(t2) C C(t1).

We focus now on the end point of the crack at time ¢, Z(t). We consider that Z(%) is a
smooth, time dependent mapping, hence its derivative

_az
T dt

provides the propagation velocity of the crack. Also, if we denote with t the tangent vector
to the crack curve, we can write V= V't.

Taking the standard view of fracture mechanics, we consider a disc of radius € centered at
the crack tip Z(t) for any time ¢, denoted by D(%):

v(t) M

D (t)={X€eB;: |X—-Z(t)| <€} (2)
At the time ¢y, the tip disc is given by:
D,={Y€Bg:|Y—-Z <€}

Notice here that D., C Bg and D.(t) C B;. Also, we will denote the part of the crack
curve which lies on D,(t) with yp, i.e., 7p = D.(t) N C(2).

Taking into account the crack tip evolution, we can establish a fictitious motion of the tip
disc (Fig.1) in the following form

X=X(Y,t), Xe€D.t), YED.,, tel 3)

Without any loss of generality, we assume that this "motion” is a rigid one (Gurtin 1981)
and particularly, it is a simple translation which follows the crack tip evolution, that is

X(Y,t)=Y+Z(t) —Zy, forall Ye D,,. 4
It is obvious that every point of D., “moves” with the velocity of the crack tip, i.e.,

V(Y,t) = %(Y, £) = % =V(t), forall Y € D,,. Q)

Figure 1: The motion of the tip disc

75



Consider now the physical motion
x=x(X,t), x€B;, XeB,telCKR, {6)

which is twice-differentiable for all (X,t) € (B; \ C(¢)) x I. Also, it is continuous along
the crack curve C(t) \ Z(t), as we assume that the crack faces are in perfect contact. We
observe that the material points X € D.(t) depend on t via the mapping X, while the
material points X € B; \ D.(t) do not depend on ¢. Consequently, we can compose the
mappings X and x for all X € D,(¢) to interpret both the crack evolution and the motion
of the body in the physical space (Fig. 2). Note that this composition holds only for those
X that belong to D, (t) at the time . As a result, we can write for all X € D,(t)

X=xoX, x:i(Ytt)=X(X(Y1t)vt)7YeD€0' (7)
The partial derivative of ¥ with respect to time will be denoted by x and the following

chain differentiation will hold

°o aX oX aX
X= 3_X(X’ t) E(Y’t) + E(X’ t), forall Xe D(t)\vp. 8)
While for all X € B, \ D.(t) away from the crack, it holds
o 8)(
=
Denoting, as usually, with F(X,¢) = 9x(X,¢)/0X the deformation gradient and taking
into account eq. (5), the equation (8) takes the form

(X,t), forall X & B;\ D(t).

x=F(X,t)V(t) + x(X,t) = V(X,¢), forall Xe& D.(t)\"p, 9)

where x(X,t) = 0x(X,t)/0t. Note that, from the above assumptions about the smooth-
ness of z, we have that F(X, ¢) and x(X, ) are continuous for X € D,(t) \ vp. However,
both F and x are singular at the crack tip Z(t).

B,

Figure 2: The total motion
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The quantity ff'(X, t) represents the velocity of the deformed tip disc accounting for the
crack evolution velocity as well. Though V(X ) is defined with the aid of the fields F

and x which are singular at the crack tip, we would like V to be smooth at the crack tip.
Thus, taking the view of (Gurtin 2000, Gurtin and Podio-Guidugli 1996), we assume the
existence of a bounded, time—dependent function U(t) such that

lim V(X,t) = U(¢), uniformlyin I. (10)

X—Z(t)
Notice that the quantity U(t) represents the velocity of the deformed crack tip.

3 AN ABSTRACT BALANCE LAW FOR A CRACKED BODY

Let 2 be any smooth domain of the body in the material configuration ;. If the crack tip
Z(t) is an interior point of (2, then there exists a radius e such that D(¢) C . In this case,
we will denote with {2, the subset of {2 which is defined as follows (Fig. 3),

§1.18) = O\ DiE) or 1} =00{t) LLD.(E). (11)

Notice that 99, = 92 U 8D (t). Also, the parts of the crack C(¢) contained in €2, and 2
will be denoted by -, and vy, respectively , that is

Ye=CHNQ®E), 7yo=CE)NN

In standard continuum mechanics, one has the freedom to formulate a global balance
law either in the reference configuration or in the current configuration. In the proposed
framework, there are three distinct configurations (Fig.2). We work on a material con-
figuration By, in which all the relevant fields should be defined. Let ¢(X,t) be a scalar
valued function defined in B;, representing some physical quantity, sufficiently smooth
away from the crack tip and up to the crack C(t) from either side, thus we let ¢ to have a
singularity at the crack tip and to be discontinuous with finite jump along C(¢) \ {Z(¢)}-

B,

Figure 3: A domain €2 containing the crack tip
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Taking the view of (Gurtin 2000), we will assume the integrability of ¢ in the sense of
Cauchy principal value, i.e. for all 2 € B;

f #(X,t) dA =1lim / #(X, ) dA. (12)
Q e—0 Q.

Analogously, it holds for the line integral of a vector valued function g(X,t) along the
curve g in the sense

/ g(X,t)-ndl:Iin%-/ g(X,t)-ndl, (13)
T Ve

where n is the unit normal to C(t). Hereafter, when we refer to the integrability of any
function over (2 and g, it will be meant in the sense of egs. (12) and (13).
Next, we consider a global balance law for the quantity ¢ of the form

d
2 fn $(X,1) dA = fa f(X,1)-NdS+ L B(X,?) dA+ g(t), (14)

where N is the outward unit normal to the boundary 952 and f and h, are the flux and the
source of ¢, respectively. The time dependent function g represents the source of ¢ due to
the crack evolution.

It is apparent that the integrability of ¢ is not enough to make eq. (14) meaningful. So, we
must pose extra smoothness on the integrands. Denoting with [f] the jump of f across the
crack, we assume the following conditions

Cl h, ¢ are integrable over (2.

o¢
X,t) dA,
c2 11 f B (X,t) dA = &( i) uniformly in 7.

Cc3 &(X,t)(V-N)dS converges uniformly in [ as € — 0.
aD.

C4 Divf, [f]-n are integrable over Q2 and ~q, respectively.
C5 f f(X,t)-NdS converges to a time dependent function as € — 0.
9D,

One can prove the following statement (Agiasofitou and Kalpakides 2003)
Assume that the Conditions 1, 2 and 3 hold. Then, [, ¢(X,t) dA is a differentiable func-
tion of t. In addition, its derivative will be given by the relation

/qb (X,t) dA = hm (j (X, ) dA) (15)

The transport theorem and the divergence theorem for any domain £2., can be written,
respectively

d [ sx0)aa= / 06X ga— [ sx,8)(V-N) ds (16)
dt aDE
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and
/Divf(X,t) dA=/ £X,4)-NdS— [ £(X,)-NdS
e a0
+ [ [8(X,8)]-ndl. a7
[%[( ) -n

Using the Conditions 1-5 and the egs. (16)-(17), one can prove the following versions for
the transport theorem and divergence theorem appropriate for the problem under study
(Agiasofitou and Kalpakides 2003)

d _ [99 1y .
- fﬂ $(X,1) dA = /g X naa-tm [ oxnv-Nas  ay

and

f f-NdS = ]DlvfdA—Hzm (X,t)-NdS—/ f(X,t)]-ndl.  (19)

9D,

Inserting egs. (18) and (19) into eq. (14), we obtain
09(X, .
]Q (% —Div (X, %) — h(X, t)) dA+ j;g [f(X,?)] -mdl—

lim [ ($(X,)(V-N)+£(X,2)-N) dS — g(t) = 0, (20)
8D,

for all 2 containing the crack tip.
We remark that in the case where {2 does not contain the crack tip and any part of the
crack, eq. (20) takes the simpler form

/ﬂ (?_?%%ﬂ — Div f(X, £) — h(X, t)) dA=0. (21)

Thus, due to the arbitrariness of {2, we conclude that

8¢g§ Y _ Divi(X, 1)~ h(X,t) =0, forall t€ I, XeB\C({H).  (22)

Similarly, we can consider 2 containing a part of the crack apart from the crack tip. In
this case, the global balance law (eq. (20)) takes the form

/ (‘%’(X’ Y _ piv (X, 1) — h(X,t)) dA + f f(X,6)]-ndl=0.  (23)
Q ot o

However, [, (0¢(X,t)/0t — Div f(X,t) — h(X,)) dA = 0, because its integrand is zero
almost everywhere due to eq. (22), i.e., it is zero everywhere apart from the crack line g,

which is a set of measure zero in (2. Consequently, eq. (23) gives

f(X,£)] -ndl =0, (24)

is}
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for all o which do not contain the crack tip. Thus, we obtain
f(X,#)]-n=0, forall teI, XeC(t)\{Z(t)}. (25)

In the same line of argument, we consider arbitrary §2 which contains the whole crack.
In this case, we must use the complete form of eq. (20). Taking into account the results
provided by egs. (22) and (25), we remark that the integrands of the first two terms of eq.
(20) vanish almost everywhere in any ), and any ., respectively, thus we can write

f c (84""%’2 — Div f(X, ) — h(X, t)) dA=0,

f [£(X,2)] -n dl = 0,

Ye

foralle > 0.
Thus, recalling the sense of integrability given by egs. (12) and (13), we conclude that
/ (@(X—’t) — Div f(X,t) — h(X, t)) dA =0, (26)
Q ot
/ (X, 4)] - m dl = 0, @7
T

for all 2 and yq, even they contain the crack tip. Finally, we obtain the localization of the
balance law at the crack tip as follows:

gt)=— Iiné (6(X,)(V-N) +£(X,t) -N)dS, forall tel. (28)
<=0 Jap,
To sum up, the requirement that the balance law (14) holds for all €2 € I3, implies the local
equations (22), (25) and (28), that is,
d¢

5 —Divf—h=0, forall te ], XeB\C(),

[f]-n=0, forall te I, X e C(t) \{Z(t)}, (29)
glt) = —]jm/ (6(V-N) +£f-N)dS, forall ¢ € 1.
e—0 8D,

4 BALANCE LAWS IN THE PHYSICAL SPACE

Throughout this and the next section, we assume that each field inserted in a global bal-
ance law at the position of the abstract functions @, f and h will enjoy the corresponding
smoothness specified in the previous section.

4.1 The balances of mass, momentum and angular momentum

We assume that there are no sources of mass, momentum and angular momentum, due
to the crack evolution. Thus, we accept that, apart from the energy, the crack evolution
does not intervene directly in the balance of the physical fields. Nevertheless, we expect
a new relation at the crack tip due to the singularities of the physical fields. We denote
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with p and T the mass density in the material configuration and the Piola-Kirchhoff stress
tensor, respectively. Also, the position vector of x is denoted with r = X — 0 . As in the
standard continuum mechanics, it is postulated that the mass, the momentum and the
angular momentum fulfil the following relations

d
) A= 30
= fn p(X,t) dA =0, (30)
d [ .
— [ pxdA= | TNdJS, €Dy
dt Q (519
i/rxpdi=f (r x T)N dS, (32)
dt Q axk

for every part  of B; and for every ¢ in some interval I.
The local form of the balances (30-32) outside the crack are extracted from eq. (29);

dp(X,t)

2 0= 5= p(), (33)
g—t(pi) — DivT = 0, (34
%(r x px) — Div(r x T) =0, 33)

forallt € I, X € B, \ C(2).
Moreover, the localization process gives the following jump conditions (see eq. (29)2)
along the crack curve

[TIn =0, (36)
[r x Tln =0, (37

forallt € I, X € C(t) \ {Z(t)}. The above local equations and jump conditions do not
differ from the corresponding ones holding for any smooth elastic body with a material
surface of discontinuity within it. Recalling that the motion x(X,¢) is continuous along
the crack C(t) (hence, r is continuous as well), we easily conclude that the condition (37)
follows from the jump condition (36).

The new results of the proposed approach concern the relations holding at the crack tip
are derived from(29); as follows

lim p(V-N)dS =0, (38)
e—0 8D,
im (px(V-N)+TN) dS =0, (39)
e—0 aD.
lim r x (px(V-N)+TN) dS =0, (40)
=Y JaD,

forallt € I.
Equation (38) shows that the rate of mass flow through 9D, vanishes, when the boundary
shrinks onto the crack tip. Egs. (39) and (40) represent the balance of linear momentum
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and angular momentum at the crack tip, respectively. Adopting the standard momentum
condition of (Gurtin 2000), that is,

lim PXQ®N IS =0,
e—0 8D,

we take from eq. (39)

lim px(V-N) dS =0, hm TN dS =0.
<=0 J9p, 8D,

4.2 The balance of Energy

Unlike the balances for mass, linear momentum and angular momentum, we assume that
the balance of energy is directly influenced by the crack growth. This is quite reasonable
because the crack propagation is a dissipative phenomenon, that is to say, the growth of
the crack consumes a part of the energy given by the applied forces. Hence, an energy
source term describing the total dissipation rate of the body, denoted here by ®(t), must
be added in the energy balance. Thus, the global balance law for energy can be postulated

d

dt_/(W+K)dA TN-xdS—®, forall tel, QebB,, (41)
ET9)

where W is the elastic energy density and K is the kinetic energy density, both are defined

per unit volume in material configuration.

Localizing eq. (41), we obtain (see eq. (29))

%(W+K)—Div(rﬂ"i)=o, Viel, XeB\C), 42)
[T7x]-n=0, Vte I, Xe Ct)\{Z(®)}, (43)
—_Ilm/ (W+K)(V-N)+T7x-N)dS, Viel (44)

It is obvious that egs. (42) and (43) are the local energy equation and the associated jump
condition along the crack, respectively. Also, eq. (44) is the energy flow out of the body
and into the crack tip per unit time and if it be divided by the crack propagation velocity V,
it will give the well-known, in fracture literature (Freund 1981), dynamic energy release
rate G, i.e.,

G=92/V. (45)

5 BALANCE LAWS IN THE MATERIAL SPACE

The balances which we are dealt with in the last section do not exhaust all the relevant
quantities involved in our problem. We must further consider balances for the configura-
tional fields, that is, the pseudomomentum and the material angular momentum.

5.1 The balance of pseudomomentum
We introduce now the pseudomomentum (or material momentum)

P(X,t)=—pF %, tel, X B\ C(2), (46)

a quantity analogous to the physical momentum, concerning changes within the material
structure. In a Hamiltonian framework, the pseudomomentum is the dual quantity to the

82



velocity of the inverse motion function, like the physical momentum is the dual of the
standard velocity of the body (Maugin and Kalpakides 2002). The contributors to the bal-
ance of pseudomomentum will be the material or configurational forces (Maugin 1993).
Considering both at a distance and at contact configurational forces, we introduce the
configurational body forces f (source term) and the configurational stress tensor b (flux
term), respectively . Moreover, we consider a pseudomomentum source term, that is a ma-
terial force, F = F(t), produced by the crack evolution. After all these considerations,
we postulate the balance law for the pseudomomentum

i/’PdA=/ bNdS+f?dA+f,VteI,VQeBt. 47)
dt Jo an Q
The local equations, obtained by eq. (47), are given (see egs. (29)) as follows
oP . =
—B?—Dlvb—fxo, vtel, Xe B \C(t), (48)
bm=0, Vtel, Xe C(t)\{Z()}, (49)
F = —lim (P(V-N)+bN)dS, Vtel. (50)
Y JeD.

Eq. (48) is the equation of pseudomomentum, which holds in the smooth part of the body
and eq. (49) is the associated jump condition. In addition, eq. (50) represents the material
force at the crack tip, which drives the crack evolution. Thus, the quantity F should be
directly related to the energy release rate, G. Also, in the static case it holds the following
relation

F=- 11_1:.% J(e),

where J is the well-known J -integral of Rice (Budiansky and Rice 1973).

In the absence of a crack or any other rearrangement in the material configuration, the last
term in the pseudomomentum balance law vanishes and eq. (48) holds all over the body
as a simple identity for the solution of the standard elastic problem. In other words, egs.
(48-50) do not make sense in the standard continuum mechanics, where only the motion
in physical space is considered. Thus, the balance law (47) must be considered when one
studies any kind of evolution of structural defects. From this point of view, it is a config-
urational balance law.

Remark 1: One can enrich the balance law (47) by considering an additional term of the
form [ g dl, accounting for configurational forces acting along the crack curve (Gurtin
2000). In that case, the localization process provides

[bIn+¢' =0,
instead of eq. (49).

Remark 2: The flux term b, like the Piola—Kirchhoff stress tensor in standard continuum
mechanics, needs a constitutive relation to be further determined. Because the constitutive
relations are out of the scope of the present procedure, we adopt without reasoning the
relation

b= (W—%pﬁz)I—FTT, (51)
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that is, the Eshelby stress tensor for the dynamical case (Eshelby 1995). For the derivation
and a discussion about this relationship, viewed as a constitutive relation, we refer to the
works of (Gurtin 2000) and (Podio-Guidugli 2002). As concerns the term f, we consider
it as a distributed body material force, produced by the material inhomogeneities (Maugin
1993). Moreover, the pseudomomentum source term F, produced by the crack evolution,
is referred to by (Maugin 1993; Dascalu and Maugin 1995) as global material force and
by (Gurtin 2000) as fip traction.

5.2 The balance of material angular momentum

We proceed to the balance of the material angular momentum, that is, the moment of
pseudomomentum, R x P, where R = X — 0 is the position vector of X. The rest con-
tributors to this law should be the moment of material contact and material body forces.
Moreover, we consider a material angular momentum source term, M = M(t) due to
the presence of the crack. We postulate:

i/Rx‘PdA= RbedS—t—_/in’dA—l—fgdA—l—M,
dt Jo 80 Q Q

Vtel, V2 € By, (52)
where g(X, %) is a vector field describing the distribution of material couples within the

body.
The localization of eq. (52) provides

va—(Bg;—a—Div(Rxb)—in'—g=0, vtel, XeB\C), (53)
M=—1m%f (Rx (P(V-N)+bN))dS, Vtel (54)
Y JaD.

and the associated jump condition
Rxbn=0, Vitel, VXeCt)\{Z({®)},

which holds identically due to the continuity of X and the jump condition (49).

Eq. (53) is the equation of material angular momentum, which holds in the bulk of the
body. If f = 0 and g = 0, then it coincides with the corresponding one of (Golebiewska
Herrmann 1982).

If we take into account the equation of pseudomomentum (48), then eq. (53) gives the
following relation

g = axlb or ga — —eABcbgc, (55)

where axlb denotes the axial vector of b (Chadwick 1976). Finally, eq. (53) 1s written as
follows

IR xP)
ot

which is in accordance with the corresponding one of (Steinmann 2000) for the static case.

—Div(Rxb)—Rxf—2axlb=0, Vt€ I, X€ B\ C(t), (56)
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Remark 3: If the material is homogeneous and isotropic, then the Eshelby stress ten-
sor b is symmetric (Steinmann 2000; Kalpakides and Agiasofitou 2002), which means
that axlb = 0, so eq. (55) gives g = 0.

Remark 4: Adopting the existence of configurational forces distributed along the crack
curve as we did in Remark 1, we obtain the jump condition

[Rxbjn+Rx g =0.

Furthermore, equation (54) gives the form of the configurational moment M at the
crack tip. Particularly,
M(t) = —imM.(t), Vi e,

e—0
where

M, (t) = fa N (R x (P(V-N) +bN)) dS. (57)

The physical interpretation of M., and its possible connection with the L—integral will be
examined in the next subsection.

5.3 The configurational moment and the L—integral

It is worth noting that the Eshelby stress tensor used in fracture mechanics literature differs
from the one used here. In fracture mechanics, the tensor b is defined with the aid of the
displacement field u(X, t), whereas in our analysis it is defined with the aid of the motion
mapping x(X, t) (see the relation (51)). If we introduce in eq. (51) the displacement field
u, we take

1 1 "
b=(W-— —2—,0X2)I —FIT= (W — E,91‘12)1 — (Vo)'T 17T,

where I denotes the two point unit tensor (or the shifter ;4 in a coordinate system). Then,

we can write 3
b=b*—-I'T, (58)

where

bY = (W — %pﬂz)l — (Vu)'T.

Notice that using b* instead of b in pseudomomentum equation and neglecting the con-
figurational body forces f, we obtain, in virtue of eq. (34), an equation of the same form

U

ot

— Divb* =0,
where
P = —p(Vu) i (59)

However, under the same manipulation the material angular momentum equation does
not retain its form. Indeed, inserting egs. (58) and (59) into eq. (53), neglecting f, g and
taking into account the equation of angular momentum, i.e. eq. (35), we obtain

%(Rx‘P“+uxpi1)—Div(Rxb”+uxT)=O. (60)
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Consequently, eq. (60) must be used in any comparison of the present results with the
corresponding ones in the linear fracture mechanics. Indeed, if R and T are replaced by
the spatial coordinates x and the Caushy stress tensor o, respectively and p and W are
defined per unit deformed volume, then eq. (60) coincides with the corresponding one of
(Fletcher 1975), for a linear, homogeneous and isotropic elastic body in the absence of
body forces.

In addition, doing the same replacements in the integral given by eq. (57), the latter be-
comes

MJt)=/{;D (RxP*+uxpi)(V-N)+(Rxb*+uxT)N)dS  (61)

In the static case, apart from the contour of integration, the integral M, reduces to the
L—integral, as it was given by ( Knowles and Sternberg 1972) and (Steinmann 2000) for a
nonlinear, homogeneous and isotropic elastic material. Therefore, an integral having the
same integrand with A, along an integration path encircling the total crack can be con-
sidered as a generalization of L—integral in the dynamical, non—linear case. It is important
to remark that, in fracture mechanics literature, the path of the L—integral includes the
whole crack, while in our analysis the path 6D, is limited around the crack tip. This, on
the one hand, justifies the term ”configurational moment at the crack tip” and on the other,
provides possibly an alternative physical interpretation of M and M. More specifically,
one can conjecture that the quantity M is related to the tendency of the crack tip (and as a
result of the crack) to turn, while the usual interpretation (for instance, see (Golebiewska
Herrmann and Herrmann 1981)) of the L—integral concerns the tendency of a stationary
straight crack to rotate, as a whole, with respect to its center.

6 THE ENERGY RELEASE RATES AND THE CONFIGURATIONAL FIELDS

In this section, expressions for the energy release rates will be derived. Particularly, the
relationship between the dynamical energy release rate with the configurational force at
the crack tip as well as the relationship of the rotational energy release rate with the
configurational moment at the crack tip, will be established.

6.1 The energy release rate and the configurational force
We start with the expression for the rate of energy dissipation, i.e., eq. (44):

® = lm [ [W+EK)(V-N)+T%x-N]ds
=Y J oD,

= lim [ [(W—-K)(V-N)]dS+1lim / x| px(V - N) + TN]dS.
e—0 8D,

e—0 aD.
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Recalling relation (9), the above equation can be written as

& = lim [ [(W—K)(V-N)—FV(px(V-N)+TN)]dS

e—0 aD.
+lim [ V-[px(V-N)+1TN]dS
e—0 8D,
= lm /[ V- [(W—K)I-F'T)N—pF'x(V-N)] dS
Y JoD,

+lim [ V-[px(V-N)+TN]dS.

e—0 8D,
Due to egs. (46) and (51), eq. (62) becomes

d=1lim [ V-[bN+P(V-N)dS
e—0 6De

+lim V- [px(V-N)+ TN] dS.
e—0 8D.

(62)

(63)

One can prove that under specific assumptions the second term in eq. (63) vanishes. The

essential step to this end is to prove the following

Proposition: Assume that
/ |px(V -N)+TN|dS, isboundedas €— 0.
8D,
Then the following convergence holds
lim [i"r(x, £) — ﬁ(t)] -[pX(V -N) + TN] dS = 0.
e—0 aD.
PROOF: We have
] [VX,2) ~ T(t)] - [px(V - N) + TN] ds]

< f sup |V(X, ) — U(¢)| |px(V - N) + TN| dS
8D, tel

< sup (Té? IV(X,t) — ﬁ(t)]) /a N |px(V - N) + TN|dS.

On the other hand, the condition given by eq. (10) means that

lim (su \N/'X,t —U@R)|) =0.
Jim (sup [V(X,6) - T())

(64)

(65)

(66)

From this convergence, taking into account that the boundary 3D, shrinks onto Z(t) as

€ — 0, it is implied that the following convergence holds as well

lim ( sup (sup|V(X,t) — ﬁ(t)|)) =0.

—0 \ XedD, tel
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The latter jointly with the assumption (64) gives

lim [ sup (Sllp IV(X,1) ~ﬁ(t)|) f |px(V -N) +TN|dS| =0,
€0 |XeaD, \ tel 8D

which, in virtue of inequality (66), completes the proof.

Next, from eq. (65) invoking the balance of physical momentum at the crack tip i.e., eq.
(39), we conclude that

lim V(X,t) - [px(V -N) +TN] dS
=Y JéD.

=lim | U()-[px(V-N)+TN]dS = 0. 67
e—0 aD.

Therefore, taking into account eq. (67), the energy flux at the crack tip, i.e., eq. (63)
becomes
®=V-lim [ (bN+7P(V-N))dS
e—0 8D
or, due to eq. (50),
®=-V-F. (68)

Using the definition (45) for the energy release rate, eq. (68) gives the following result
G=-F-t, (69)
which confirms that the energy release rate G is the crack driving force.

Remark 5: In the preceding analysis, two relations, which can be viewed as constraints
on the singularity order for the velocity and the stress fields at the crack tip, have been
arisen. These relations are the condition (64) and the equation (39). Suppose that the in-
dependent variables of a function f(X,¢) (say f be the velocity or the stress tensor) can
be separated as
f(Xs t) = g(?‘)h(ﬂ,t),

where r = |X — Z(t}| and @ are the distance and the angle, respectively, in a polar coor-
dinate system with its origin at the crack tip. Then, assuming that g(r) = O(r?), p > —1
is sufficient to assure that the condition (64) holds. Furthermore, assuming that g(r) =
O(r?), p > —1, we obtain that eq. (39) holds, as well. However, it is well known that
for a linear elastic, cracked body, both the near tip velocity and stress fields are of order
O(r—%) (Freund 1981).

6.2 The rotational energy release rate and the configurational moment at the crack tip

In this section, we will show that a relationship between the rotational energy release rate
and the configurational fields at the crack tip can be established. We start with the relation
(57) which can be written as

M =—lim R x CN dS, (70)
=0 Jap,
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where
C=PQV+b’. (71)

Considering that the crack evolves along an arbitrary smooth curve, we introduce the

angular velocity of the crack tip
w(t) = wm, (/12)

where m = t x n is the unit normal vector to the plane of the crack. Furthermore, denoting
with a = @ n the instantaneous radius of curvature (n the unit normal to the curve), we
can write

w=—. (73)
a

Also, we denote with R; = Z — 0 = Rze the position vector of the crack tip. Then, we
can write (see Fig.4)
Rz=R+¢€, e€=—ceN.

Therefore, the configurational moment M becomes

= —lim / (Rz x CN) dS +lim / (e xCN) ds. (74)
8D, 8D,

One can prove that the last term in eq. (74) vanishes under a particular condition. Indeed,

/ (exCN)dS=—f (eNxCN)dS = —ef (N x CN) dS.
8D, 8D oD,

In addition, it holds
[ f (N x CN) dS| < / (IN| x |CN}) dS = f |CN] dS.
D 8D. 8D,

Thus, assuming that the integral [, |CN| dS is bounded as € — 0, we obtain that the

integral [, (e x CN) dS vanishes as € — 0.
Consequently, the expression for M (eq. (74)) becomes

=—11mf (Rz x CN) dS = —Rz x (hm
8D,

e—0

CN dS) (75)
8D,

Notice that using the relation (71), the quantity F is written
F =—lim CNdS.
6—70 aDe

So, M is given by the following simple formula
M=Rz x F, (76)

which confirms the term configurational moment at the crack tip, since, essentially, it is
the moment of the configurational force at the crack tip.
In addition, if 6 is the angle from the t-axis to the e-axis, then M is written in terms of
F as follows

M= RZ( cosf (F -n) —sinO(F - t))m. (77)
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Figure 4: Some geometrical characteristics of the crack

Next, we calculate the product
w - M =wRz( cosf (F -n) —sin8(F - t)) (78)

in order to take an expression for the rate of dissipation in terms of the configurational
force and the configurational moment at the crack tip

_ a
" Rysiné

Furthermore, if we denote with

(w- M) —Vcotd(F -n). (79)

G (80)
[63)

the rotational energy release rate, that is, the energy flow into the crack tip per unit angle

extension of the crack, then from eq. (79) we have

G, = (w- M) —acotd(F -m). (81)

a
stine

Remark 6: Assuming that Z(t) is a C? function, the instantaneous radius of curvature at
Z(t) is related to the instantaneous curvature at Z(t) by a = I_;;T and

dz, 2
WZIEX% _ [V xA]

Zp T VP

(82)

where A = d2Z/dt? is the acceleration vector of the crack tip. Therefore, we can write ®
(eq. (79)) in the following alternative form
V2

5
RzAn sin @

(w- M) —Vcotf(F -m), (83)
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where A, is the normal component of the vector A.

Remark 7: In the case in which the crack is circular and the origin of the coordinates’
system coincides with the center of the circle, the formulas (79) and (81) give

d=—w-M, G=M-m=M. (84)

We can see from eq. (84), that the rotational energy release rate is simply the magnitude
of the vector of the configurational moment at the crack tip. Analogous results to eq. (84),
have been provided by (Maugin and Trimarco 1995) as well as by (Budiansky and Rice
1973) for disclinations and cavities, respectively. Of course, someone can easily see the
analogy between the relations (68), (69) and (84);, (84)., respectively.

7 CONCLUSIONS

The objective of this paper was the study of the crack propagation within an elastic
medium in the context of configurational mechanics. To this end, we proposed an ap-
propriate kinematics and we formulated the corresponding transport and divergence the-
orems. In the sequel, we produced a rigorous localization process which has been used to
derive the local equations for both the physical and configurational fields.

A significant consequence of the localization process was the expression for the con-
figurational force at the crack tip related to the J—integral as well as the corresponding
one for the configurational moment at the crack tip which is related to the L—integral.
Based on these expressions, we derived a relationship between the configurational force
at the crack tip and the energy release rate, as well as a relation connecting the rotational
energy release rate with the configurational moment and force at the crack tip.

In the case of a crack with non constant curvature, the rotational energy release rate
depends essentially on the geometrical characteristics of the curve. Therefore, in order
to apply the formula (81), the geometrical characteristics of the curve along which the
crack will evolve should be a priori known. Such situations appear in delamination cracks,
where the crack necessarily follows a particular curve.
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1.INTRODUCTION

The purpose of this paper is to establish existence of C2[0,1]-solutions to the scalar Neumann
boundary value problem (BVP)

Fltz. o', ") =0, t€[0,1]
{ (0)=a, 2/(1)=b, a#b, (V)

where the function f(¢,z,p,q) and its first derivatives are continuous only on suitable subsets of
the set [0, 1] x R®.

The solvability of the homogeneous Neumann problem for the equation (p(t):c’)’ +f(t,z,2' ") =
y(t) has been studied in [5,9,11]. Results, concerning the existence of solutions to the homogeneous
and nonhomogeneous Neumann problem for the equation z” = f(¢,z,2',2") — y(¢t) can be found
in [5,10] and [7] respectively. BVPs for the same equation with various linear boundary conditions
have been studied in [1,2,7,10]. The results of [12] guarantee the solvability of BVPs for the equation
2" = f(t,z,2',2") with fully linear boundary conditions. BVPs for the equation f(t,z,2’,z") =0
with fully nonlinear boundary conditions have been studied in [6]. For results, which guarantee the
solvability of the Dirichlet BVP for the same equation, in the scalar and in the vector cases, see [3]
and [8] respectively.

Concerning the kind of the nonlinearity of the function f(¢,z,p,q), we note that it is assumed
semilinear in [1], linear with respect to z, p and ¢ in [2,11] and sublinear in [5], while in [11] f is a
Caratheodory function. Finally, in [10] and [12] f is a linear function with respect to g, while with
respect to p it is a quadratic function or satisfies Nagumo type growth conditions respectively.

As in [4,6], we use sign conditions to establish a priori bounds for z, z’ and z”, where z(t) €
C?[0,1] is a solution to a suitable family of BVPs containing the problem (N). Using these a priori
bounds and applying the topological transversality theorem from [4], we prove our main existence
result.
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2.BASIC HYPOTHESES
Our results rely on the following three hypotheses.
H1. There are constants K; >0 and K, > 0 such that
fx(t,z,p,q) > K, for (t,z,p,9) €[0,1] X R x J, x R,
Lltizpg) < =K, for [t,z,p,q) € [0,1] X.Jp % J, % R,

2

where J, = [min{O, &?,Eé*i—w},max{(),%—b, -2(—:_76)}} and J, = [min{a, b}, max{a,b}].

H2. There are constants K > 0, M > 0 and a sufficiently small ¢ > 0 such that

f(t,l',p,Q’) +Kq2 0 for (t:IJPJQ) € [O: 1] x [_'MO _E7M0+E] X R X (—OO,—M),

and
flt,z,p,q) + Kqg <0 for (t,z,p,q) € [0,1] X [-My— &, My +¢] x R x (M, 0),
where
e Q la+b] a
My = —(|la — — 2.1
0 ma‘X{SQ - 1 (Ia’ beI + |ae b|)1 min{K, K‘qux} + max{ 2 72!& . bl}}ﬂ ( )

g = max’)\f(t,:c,p,b —a—(1- )\)a:) —(1- A)K(b —a—(1- )\):c)| for (A t,z,p) € [0,1] x

[0,1] x J, x J,, and the constants K, and K, as well as the sets J, and J, are as in HI.
H3. f(t,z,p,q) and f,(¢,z,p,q) are continuous and f,(¢,z,p,q) <0

for (t,z,p,q) € [0,1] X [-Mo — &, Mp +¢] X [-M; — &, My + €] x [-Ms — &, M> + €], where

M, =la|+ Mo+ M, My = My+ M, and My and M are as in H2.

3.AUXILIARY LEMMAS

In order to obtain our main existence result, we consider the following family of BVPs

{ K(m” —-(1- A)x) = )\(K(m” -(1- )\).’L‘) + f(t, z,z’, (2" — (1 - )\):c))), (3.1),
o) =u, [l)=05,

where A € [0,1], while K > 0 is as in H2, when H2 holds, and prove the following two auxiliary

lemmas.

LEMMA 3.1. Let H1 be hold and z(t) € C?[0,1] be a solution to (3.1)x, A € [0,1], where K >0

is an arbitrary constant. Then
|lz(t)] < Mo, t € [0,1],

where M is defined by (2.1).
Proof. For A = 0, the problem (3.1)q is of the form

g = =y w{0) =g, g (l)=075
The unique solution to this BVP satisfies the bound

f2t)] <

(la — be| + |ae —b]), t <€ [0,1].
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Let now A € (0, 1]. Then the function y(t) = z(t)—s(t), t € [0,1], where s(t) = 52t +at, t € [0, 1],
is a solution to the homogeneous boundary value problem

K (y'+b—a—(1-X)(y+s)) = /\(K(y”+b—a—(1—A)(y+s))+f (t,y+s,y’+s’,y”+b—a—(1—f\)(y+s))):

y(0)=y(1) =0

From this equation we obtain

(1-NKy" = (l—A)QKy—(1—)\)K(b—a—(1—A)s)+)\f(t,y+s,y’+s',y”—i—b—a—(1—)\)(y+s)),

(1-XN)Ky" = (1-—/\)2Ky—(l—A)K(b-—a—(1-—)\)s)—}»)\f(t,y—f-s,y’-i—s’,y"—i—b—a——(1—A)(y+s))—

—)\f(t,s,y’—}-s’,y”-{-b—a— (l—A)(y—l—s)) —l—)\f(t,s,y’—i—s’,y”—l—b—a—(1—)\)(y+s)),

(1=-NKy" = (1=-2)*Ky—(1-NK(b—a—(1—N\)s)+\f, (t,.s+91y, y'-i-s’,y”—i—b—a-(1—)\)(y+s))y+

+)\f(t,s,y’+s’,y"+b—a— (1—/\)(y+s)) —/\f(t,s,y’—i-s',y”—l—b—a— (1—)\)3)—{—

+)\f(tﬁsvyl+3’3y”+b_a’_ (1_‘)‘)3):

(1-NKY" = (1-A?Ky—(1-NK(B-a—(1-N)s)+Afa (b, 4619,y +5',y" +b—a— (1) (y+s) )+

_)‘fq(tasay, =+ Sr:y" +b—a= (1 - }‘)S - 92(1 - A)y)(l - ’)‘)y—{_
—i—/\f(t,s,y’+s',y”+b—a—(1—A)s)—)\f(t,s,y’—i—s',b-—a—(1—}\)3)4—)\)"(1:,s,y’-{—s’,b—a-(l—)\)s),

(1=NKy" = (1=2)’Ky—(1-NK(b—a—(1=N)s)+ o (t, 5401y, ¥+, " +b—a— (1-X)(y+3) g+

=M1 - )\)fq(t, s, +8,y" +b—a— (1= X)s—0(1— A)y)y+

A fo(tisy +5 b—a— (1= N)s+0")y" + \f(t.s,0/ +5,b—a—(1— Ms),
((1 - MK — )\fq(t,s,y’ +sb—a—(1—-A)s+ 93y”))y” =

((1 - A)zK-I-)\fm(t,s+91y,y’+s’,y” +b—a—-(1-A)(y+ 3))— (3.2)

-A(1 - )\)fq(t,s,y’+ siy"+b—a—(1—A)s—6(1— A)y))y—i—
+Af(ts, g+, b—a—(1-N)s) — (1= NK(b—a—(1-))s),

where 0< 6, <1,i=1,2,3.
Next, suppose that |y(¢)| achieves its maximum at £y € (0,1). Then the function z = y?(t) has
also a maximum at fy. Consequently, we see that

0 > 2"(to) = 2y(to)y" (o). (3.3)
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Using the fact that y/'(tp) = 0, from (3.2) we obtain

(1=K = Ayt s0 46— a = (1 = W +0) ) -

((1 = N((1 = XK = Afy(to, 50, 5,3 +b— @ — (1 — N)so — 02(1 = N)zo) ) +

(34)
Ae (to, 80+ 6190, 0, Yo + 0 —a — (1 = A)(yo + 30)))3}0—!—
+/\f(t0,80,36, b—a-— (]. — }\)So) - (1 — )\)K(b —a— (]. — /\)80),
where s = s(to), 5o = '(to), o = y(to), Y5 = y"(to)-
On the other hand, in view of H1, we have
min{ K, —Tq,}—z} > min{K, K,, K, },
where B
Fo = fa(tos 50, 56,45 +b—a— (1= \)so— 82(1— Ngo),
Fo= fo(to, 50+ 0190, 80,96 +b— a— (1= A)(yo + 50))-
Suppose now that |y(to)| > E’E{‘K‘%{m Then, from (3.4) and (3.5) it follows that
(1= XK = Afy(to, 50, 56,5 — a— (1 = N)so + 6598 ) ) > min{ K, K, K }y(to)+ (3.6)
+Af (to, 50,80, b—a — (1= N)so) — (1= NK(b—a— (1 - X)so) ‘
if y(to) > m and
{ ((1 — K - )\fq(tn, 80,50,6—a — (1 —A)so + 9396’))?9’6’ < min{ K, K¢, Kz }y(to)+ (3.7)

+Af (to, 50,50, —a — (1= A)so) — (1= NK(b—a— (1 = X)so)

if y(to) < —ﬁm Multiplying (3.6) and (3.7) by y(to), we obtain

(1= MK — Afy(to, 50, 55,6 —a— (1= X)sg + 6335 ) ) ¥6vo > yo(min{K, Ky, Ko }yo — Q) > 0,

(1-NK - Mo(to, 50,50, —a — (1= N)so + 6335 ) ) wgvo > yo(min{ K, K, Ko }yo + Q) >o.
respectively. Finally, since f, (to, 80,50, 0—a— (1 —N)so+ Bgyg) < 0, we conclude that

ygyo > O:

which contradicts (3.3). Thus, we infer that if |y(t)| achieves its maximum in (0, 1), then

£ < @ ,
ly(t)| < n(K, Ko K, for t€[0,1] and A€ (0,1]

Let |y(1)| be the maximum of |y(t)| and suppose that [y(1)| > m Following the above
reasoning and the fact that 3'(1) = 0, we obtain

y(1)y"(1) > 0.
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If y(1) >0, then y”(1) >0 and so ¥'(t) must be a strictly increasing function for ¢ € U, where
Uy C [0,1] is a sufficiently small neighbourhood of t=1. So, we see that

y(t)<y(1)=0 for teU\{1l},

ie. y(t) is a strictly decreasing function for ¢ € U;. Therefore, y(1) = |y(1)| can not be the
maximum of |y(t)| on [0,1], which is a contradiction. Assume next that y(1) < 0. Then a similar
to the above arguments lead again to a contradiction. Thus, we see that

VOIS R KT

The inequality 0
<
ly(O)] < min{ K, Ky, K,}

can be obtained in the same manner. Consequently, the solutions of (3.1),, A € (0,1], satisfy the
bound

a®  |a+?
)<
[=(8)] = min{K, K,, K,} Na—b 2
and the proof of the lemma is complete.O

LEMMA 3.2. Let H1 and H2 be hold and let z(¢) € C?[0,1] be a solution to (3.1)x, A € [0, 1], where
K is as in H2. Then:

(a)

}, teo,1],

lz"(t) = (L= A)z(@)| < M, |a"()] < Mz, te€[0,1],

where My = My + M;

(b)
|2/ (¢)] < My, t € [0,1],

where M; = |a| + My + M.
Proof. (a) Suppose that there exists a (tp, Ao) € [0,1] x [0,1] or a (1, A1) € [0,1] x [0, 1] such that

z"(to) — (1 — Xo)z(to) < —M or z"(t1) — (1 — \)z(ty) > M.

By Lemma 3.1, we have
|z(t)| < My for t € [0,1]. (3.8)

In particular, (3.8) holds for ¢y or #;. Thus, in view of H2, we have

0> K (a"(to) — (1 — Xo)z(to)) = Ao (K(m”(tg) — (1= Xo)a(to))+

+f(t0:$(t0): xl(tO)ﬂ‘rH(tO) - (1 - }‘O)E(tO))) = 0
or
0< K(a"(t:) — (1= M)z(tr)) =M (K(m”(tl) — (1= )z(t))+

+f(t1,2(t2), 2 (1), 2" () — (1 - }\1)55(?51))) <0,
respectively, which is a contradiction. The obtained contradiction shows that

-M <z"(t) = (1—ANz(t) <M for t€[0,1] and A € [0,1],
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and therefore
—(Mo+ M) <2"(t) < Mg+ M for tel0,1],
which proves (a).
(b) Observe that, by the mean value theorem, for each t € (0,1] there is a £ € (0,¢) such that
Z'(t) — 2'(0) = 2" (&)t.
Since, in view of (a), we have |z"(§)| < My + M, from the last formula we find that
|2’ (@)] < [2'(0)] + |2"(€)] < lal + Mo+ M, t € [0, 1],
which proves (b) and completes the proof of the lemma.O
4.THE MAIN RESULT

Our main result is the following existence theorem, the proof of which is based on the lemmas of
the previous section and the topological transversality theorem from [4].

THEOREM 4.1. Let H1, H2 and H3 be hold. Then the problem (N) has at least one solution in
C?0,1].
Proof. ]For any (A t,z,p,q) €10,1]x[0,1] x [-Mo—¢, My+e] x [-M; —&, My +¢] x [-My—¢e, Ma+€]
consider the function h(A,t,z,p,q) = )\(Kq -+ f(t,a:,p,q)) — Kq, where M;,i = 0,1,2 are the
constants for which, in view of Lemmas 3.1 and 3.2, each C?[0,1]-solution z(¢) to (3.1)x, A €
[0, 1], satisfies the bounds

|z(t)] < Mo, |2'(t)| < My, |z"(¢) — (1= Nz(t)| < M, and |2"(t)] < M,, for t€[0,1], (3.9)
respectively. Since My > M, in view of H2, we obtain
h(A\t,z,p,—Mz—¢e) >0 and h(\t,z,p,My+e) <0

for (A t,z,p) €[0,1] x[0,1] x [-My — &, My + €] x [-M; — €, M; + €|. Besides, by H3, we see that
h(X,t,z,p,q) and he(A,t,z,p,q) are continuous functions and hy(A,t,z,p,q) <0 for (A t,z,p,q) €
[0,1] x[0,1] x [-Mo—e, My +¢] x [—=M; —¢&, My +€] X [~ My —e, My +¢]. Therefore, there is a unique
function G(A,t,z,p), which is continuous on the set [0, 1]x[0, 1]x [—My—e, Mo+e]|x [— My —¢&, My +¢]
and such that

q= G(A:tsmap): (A,t,f&',p) = [03 1] X [07 1] X [_MU — &, MO +€] X [_Ml — &, Ml + E])
is equivalent to the equation
h’()\: t; z,p, q) = O: (Aa t': z,p, Q) = [Oa 1] X [07 1] X [_MO_'E: M0+5] X [_Ml —€, MI+E] X [_MZ_EJ M2+E]'

So, since [z”(t) — (1 — Nz(t)] < M < My+¢ for ¢t € [0,1] and A € [0,1], the family (3.1), is
equivalent to the following families of BVPs
z" — (1 =Nz =G(At,z2), tel01],
{ # (0)=w, 2/{1) = b, (310
and (2 - Nz = G\ 2,2, te[o,1]
2" —(2—-ANz = oo —x, € |0,1],
{ Z(0)=a, Z'(1) =}, (L
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A € [0,1]. Note that from h(0,%,z,p,0) = 0 it follows that
G(0,t,z,p) =0 for (¢t,z,p) €[0,1] x [-Mp — &, My +¢] x [-M; — &, My + €. (3.12)
Now, for C%;[0,1] = {z(t) € C?[0,1] : 2(0) = a, 2'(1) = b} define the set
U={zeC30,1]: |a| < Mo +¢, || < My + &, |a"| < My + ¢}
and then for A € [0,1] define the maps
Gr: C'0,1] = C[0,1] by (Gxz) () = G(\t,2(8),7/(£)) — =(2), t € [0,1],

j:C2[0,1 - C0,1] by jx=z and L,:C%[0,1] = C[0,1] by Lyz=2z"—(2- Nz.

Since Ly, A € [0,1], is a continuous, linear, one-to-one map of C%[0,1] onto C[0,1], the map
L3, X € [0,1], exists and is continuous. In addition, G, A € [0,1], is a continuous and j is a
completely continuous embedding. Since j(U) is a compact subset of C[0,1], and G, A € [0,1],
and Ly', A € [0,1], are continuous on j(TU) and G,(j(U)) respectively, the homotopy

H:U x[0,1] — C*[0,1] defined by H(z,\) = Hy(z) = L G,j(z)
is compact. Besides, the equation
L7'Gyj(z) =2 forz €U yields Lyz = Gyjz,

coincides with the BVP (3.11),. Thus, the fixed points of Hy(z) are solutions to (3.11),. But, by
(3.9), the solutions to (3.11), are elements of U. Consequently, Hy(z),A € [0,1], is a fixed point
free on OU, i.e. H)(z) is an admissible map for all X € [0,1]. Finally, using (3.12), we see that the
map Hj is a constant map, i.e. Hy(z) = [, where [ is the unique solution to the BVP

2" —2z=—z, 2(0)=ga, #'(1)=0

From the fact that | € U it follows that Hj is an essential map (see, [4]). By the topological
transversality theorem (see, [4]), H; = L7'G:j is also essential. So, the problem (3.11); has a
C?[0, 1]-solution. That is, (3.10); has a C?[0, 1]-solution. To complete the proof, remark that the
problem (3.10) is equivalent to (3.1);, which coincides with the problem (N).O

We conclude with the following example, which illustrates our main result.
ExAMPLE 4.1. Consider the boundary value problem

1-(1.5-t)z" —tz"° —cosa’ +x =0,

Z'(0)=0, z'(1)=10""
Clearly, H1 holds for K, =1, K, =0.5, J; = [0,5.107°] and J, = [0,107%]. Next, observe that

510° <107 - (1—-A)z <107* for z€J,
and choose K = 0.5. Then, from
~1,5107* = 107 < —(1,5 - )(10* — (1 = A)z) — £(107* — (1 - N)a)’ < —2,5.107°
for (A,t,z) €[0,1] x [0,1] x J; and

0<1-—cosp<5.107° for pe J,
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it follows that
~16.107° < 1—(1,5-)(107 = (1= N)z) — (1074 - (1 - )\):c)5 —cosp+z < 25107 +5.107°
for (A,t,z,p) € [0,1] % [0,1] X J; X J,. Therefore Q = max{16.1075, 0,5.10~*} = 16.107°. Note that

16.107°

— LB L =8 10
min{L, 1] ©

(1107%| + [107%)),

e
Mo = max{ 21
and, as it is easy to see, H2 and H3 hold for M =5 and & = 3.107°. Thus, we can apply Theorem
4.1 to conclude that the considered problem has a solution in C?[0, 1].
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